...
首页> 外文期刊>Journal of turbomachinery >Automatic Design Optimization of Profiled Endwalls Including Real Geometrical Effects to Minimize Turbine Secondary Flows
【24h】

Automatic Design Optimization of Profiled Endwalls Including Real Geometrical Effects to Minimize Turbine Secondary Flows

机译:异型端壁的自动设计优化,包括真实的几何效应,可最大程度地减小涡轮的二次流

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper presents a novel optimization methodology based on both adjoint sensitivity analysis and trust-based dynamic response surface modeling to improve the performance of a modern turbine of a large civil aero-engine in the presence of high-fidelity geometry configurations. The system has been applied to the nonaxisymmetric hub and tip endwall optimization of a high-pressure turbine stage making use of multirow 3D simulations, parametric modeling, and rapid meshing of real geometry features such as rim seals and modeling of film cooling flows. It has been shown in previous papers that improvements gained using simplified models of the stage are lost when applying the high-fidelity geometry configuration. New results presented in this paper indicate that controlling the purge flow that exits the disk space through the rim seal at the hub of the main annulus is more significant than the reduction of secondary flows in the main passage. For a given rim sealing mass flow rate and whirl velocity, the nonaxisymmetric endwalls are optimized such that the detrimental impact of the sealing flow on the turbine performance is reduced, and hence, the stage efficiency is significantly increased. The traditional optimization approaches based on evolutionary methods or even sequential modifications for defining the endwalls shape are computationally demanding. Since turbomachinery industry continuously strive to reduce the design cycle time, in particular when high-fidelity 3D computational fluid dynamics (CFD) is used, the main body of this paper outlines the novel methods developed to produce a practical design in a very aggressively short design cycle time.
机译:本文提出了一种基于伴随灵敏度分析和基于信任的动态响应表面建模的新型优化方法,以在存在高保真几何结构的情况下提高大型民用航空发动机现代涡轮机的性能。该系统已通过多行3D模拟,参数化建模以及诸如边缘密封和薄膜冷却流建模等真实几何特征的快速网格化,已应用于高压涡轮机级的非轴对称轮毂和末端壁优化。在以前的论文中已经表明,当应用高保真几何结构时,使用简化的舞台模型获得的改进会丢失。本文提出的新结果表明,控制吹扫流量通过主环带轮毂处的边缘密封从磁盘空间流出,比减少主通道中的次要流量更为重要。对于给定的轮辋密封质量流量和涡流速度,非轴对称端壁经过优化,从而减少了密封流对涡轮性能的不利影响,因此,级效率显着提高。基于进化方法或什至顺序修改以定义端壁形状的传统优化方法在计算上要求很高。由于涡轮机械行业一直在努力减少设计周期,特别是在使用高保真3D计算流体动力学(CFD)时,本文的主体概述了为在非常短的设计中产生实际设计而开发的新颖方法。周期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号