...
首页> 外文期刊>Journal of turbomachinery >Numerical Study of Purge and Secondary Flows in a Low-Pressure Turbine
【24h】

Numerical Study of Purge and Secondary Flows in a Low-Pressure Turbine

机译:低压透平中吹扫和二次流的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The secondary flow increases the loss and changes the flow incidence in the downstream blade row. To prevent hot gases from entering disk cavities, purge flows are injected into the mainstream in a real aero-engine. The interaction between purge flows and the mainstream usually induces aerodynamic losses. The endwall loss is also affected by shedding wakes and secondary flow from upstream rows. Using a series of eddy-resolving simulations, this paper aims to improve the understanding of the interaction between purge flows, incoming secondary flows along with shedding wakes, and mainstream flows on the endwall within a stator passage. It is found that for a blade with an aspect ratio of 2.2, a purge flow with a 1% leakage rate increases loss generation within the blade passage by around 10%. The incoming wakes and secondary flows increase the loss generation further by around 20%. The purge flow pushes the passage vortex further away from the endwall and increases the exit flow angle deviation. However, the maximum exit flow angle deviation is reduced after introducing incoming wakes and secondary flows. The loss generation rate is calculated using the mean flow kinetic energy equation. Two regions with high loss generation rate are identified within the blade passage: the corner region and the region where passage vortex interacts with the boundary layer on the suction surface. Loss generation rate increases dramatically after the separated boundary layer transitions. Since the endwall flow energizes the boundary layer and triggers earlier transition on the suction surface, the loss generation rate close to the endwall at the trailing edge (TE) is suppressed.
机译:二次流增加了损失并改变了下游叶片排中的流入射。为了防止热气体进入磁盘腔,在实际的航空发动机中将吹扫气流注入主流。吹扫流与主流之间的相互作用通常会导致空气动力学损失。端壁损失也受到尾流的脱落和上游行二次流的影响。本文使用一系列涡旋解析模拟,旨在增进对吹扫流,传入的二次流以及脱落尾流以及定子通道内端壁主流之间相互作用的理解。已发现,对于长宽比为2.2的叶片,泄漏率为1%的吹扫气流会使叶片通道内的损耗产生增加约10%。进入的尾流和二次流进一步增加了约20%的损耗。吹扫流将通道涡旋进一步推离端壁,并增加了出口流角偏差。但是,引入引入的尾流和二次流后,最大出口流角偏差会减小。使用平均流动动能方程式来计算损失发生率。在叶片通道内确定了两个具有高损耗发生率的区域:拐角区域和通道涡旋与吸力表面上的边界层相互作用的区域。分离的边界层过渡后,损耗发生率急剧增加。由于端壁流动激励边界层并触发吸力表面上的更早过渡,因此抑制了在后缘(TE)靠近端壁的损耗发生率。

著录项

  • 来源
    《Journal of turbomachinery》 |2017年第2期|021007.1-021007.10|共10页
  • 作者

    Jiahuan Cui; Paul Tucker;

  • 作者单位

    Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK;

    Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号