...
首页> 外文期刊>Journal of turbomachinery >Understanding Capacity Sensitivity of Cooled Transonic Nozzle Guide Vanes: A Parametric Experimental and Computational Study of the Impact of Trailing Edge Geometry
【24h】

Understanding Capacity Sensitivity of Cooled Transonic Nozzle Guide Vanes: A Parametric Experimental and Computational Study of the Impact of Trailing Edge Geometry

机译:理解冷却跨音调喷嘴导向叶片的容量敏感性:落后几何撞击的参数实验和计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

High-pressure (HP) nozzle guide vane (NGV) capacity is one of the most important parameters for setting overall turbine power output, for stage matching, and for understanding turbine performance. Accurate capacity prediction early in the engine design process reduces the cost and risk of late-stage changes in the overall turbine design. High accuracy predictions rely on calibrated computational fluid dynamics (CFD) methods. Because of the numerous sensitivities in the methods, they are generally restricted to certain classes of design for which there is experimental validation. This paper considers the effect of changes in trailing edge (TE) geometry-particularly suction side (SS) TE overhang length-on the flow capacity of a modern HP NGV. Ultra-low uncertainty experimental measurements and complementary numerical predictions of capacity are presented for four TE geometries, in a parametric study bridging the gap between a classical centered-ejection design and a SS overhang TE design. This study discusses the absolute and relative (differences between designs) accuracies of the numerical method and develops understanding of the sensitivity of capacity to TE geometry. Fundamental mechanisms responsible for the observed capacity changes are elaborated. The impacts on capacity of both changes in the coolant flows and the boundary layers in the controlling region of the vane passage are considered. These effects are found to be very small. A simple total pressure loss model was also developed but was found to be a poor predictor of the observed capacity changes across the entire range of overhang lengths. To understand the observed changes, two more sophisticated models of the vane passage are proposed. In the first model-for relatively long TE overhangs-the mainstream and TE flows (and a wake) pass through a common minimum area. In the second model-for relatively short TE overhangs-the two flows are considered to pass through independent, non-interacting minimum areas. This framework reconciles the experimental and numerical data with the models but illustrates the complexity of the problem. In particular, it demonstrates the arbitrariness of considering a single minimum area. Contrary to some received industrial wisdom, it is argued that deemphasising this construct, and explaining capacity changes by examining aerodynamic changes in the entire controlling region of the passage, is more helpful in attempting to understand design sensitivities.
机译:高压(HP)喷嘴导向叶片(NGV)容量是设置整体涡轮功率输出的最重要参数之一,用于阶段匹配,以及了解涡轮机性能。发动机设计过程早期准确的容量预测降低了整个涡轮机设计中的晚期变化的成本和风险。高精度预测依赖于校准的计算流体动力学(CFD)方法。由于该方法中的许多敏感性,它们通常限于某些类别的设计,其中有实验验证。本文考虑了后缘(TE)几何形状的变化 - 特别是吸入侧(SS)TE悬垂长度的影响 - 现代HP NGV的流量。对于四个TE几何形状,在参数研究中呈现了电容的超低不确定性实验测量和互补数值预测,弥合了古典集中的喷射设计与SS悬垂设计之间的间隙。本研究讨论了数值方法的绝对和相对(设计之间的差异)的准确性,并对对TE几何体的敏感性的理解发展。阐述了负责观察到的能力变化的基本机制。考虑对冷却剂流和控制区域的控制区域中的两个变化的容量的影响被认为是叶片通道的控制区域中的两个变化。发现这些效果非常小。还开发了一个简单的总压力损失模型,但被发现是观察到的容量变化的差的预测因子,整个悬垂长度范围。要了解所观察到的变化,提出了两个更复杂的叶片通道模型。在第一个模型 - 对于相对较长的TE悬垂 - 主流和TE流(和唤醒)通过公共最小区域。在第二模型 - 对于相对短的TE悬垂 - 两种流动被认为通过独立的,非交互的最小区域。该框架与模型协调了实验和数值数据,而是说明了问题的复杂性。特别是,它展示了考虑单一最小面积的任意性。与某些接受的工业智慧相反,有人认为这种构造,并通过检查通道的整个控制区域的空气动力学变化来解释能力变化,更有助于了解设计敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号