...
首页> 外文期刊>Journal of turbomachinery >Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging in a Lattice Cooling Channel
【24h】

Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging in a Lattice Cooling Channel

机译:使用磁共振成像在晶格冷却通道中的流动特性的三维可视化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Flow structures in lattice cooling channels are investigated experimentally by measuring three-dimensional (3D) velocity components over entire duct. The lattice cooling structure is formed by crossing two sets of parallel inclined ribs. Heat transfer is enhanced when coolant flows through the narrow subchannels between the ribs. According to the past literature, longitudinal vortex structures are formed inside the subchannels due to interactions between crossing flows. In this study, 3D velocity field measurement is performed using magnetic resonance imaging (MRI) scanner to clarify the flow mechanism. The rib inclination angle is varied from 30 to 60 deg. Reynolds number is set at approximately 8000 based on the whole duct inlet hydraulic diameter and bulk velocity. Working fluid is 0.015 mol/L copper sulfate aqueous solution. Measured results show that coolants in the upper and lower subchannels interact not only at the both ends of the duct, but also at diamond-shaped openings formed by opposite subchannels. The exchange of momentum between the upper and lower subchannels occurs at the openings, leading to sustained longitudinal vortex in each subchannel as mentioned in the literature. When the ribs are arranged with obtuse angle, a large vortex spreads across the contact surface, while the vortex structure independently stays in each subchannel for acute rib angle. The measured velocity fields are compared with numerically-simulated ones using a Reynolds-averaged Navier-Stokes (RANS) solver. Overall flow pattern is captured, but flow interaction between the upper and lower subchannels is underestimated.
机译:通过在整个管道上测量三维(3D)速度分量来实验研究格子冷却通道中的流动结构。通过穿过两组平行倾斜的肋来形成晶格冷却结构。当冷却剂流过肋骨之间的窄子信道时,增强了传热。根据过去的文献,由于交叉流之间的相互作用,在子信道内形成纵向涡流结构。在该研究中,使用磁共振成像(MRI)扫描仪进行3D速度场测量,以阐明流量机构。肋倾斜角度从30到60°变化。基于整个管道入口液压直径和散装速度,雷诺数设定为大约8000。工作流体为0.015mol / L硫酸铜水溶液。测量结果表明,上部和下部子通道中的冷却剂不仅在管道的两端相互作用,而且在由相对的子通道形成的菱形开口处相互作用。上部和下部子通道之间的动量交换发生在开口处,导致每个子信道中的持续纵向涡旋,如文献中所述。当肋条布置有钝角时,大的涡流横跨接触表面延伸,而涡旋结构独立地保持在每个子信道中以用于急性肋角。使用雷诺平均Navier-Stokes(RANS)求解器将测量的速度场与数值模拟的速度字段进行比较。捕获整体流动模式,但上部和下部子信道之间的流动交互被低估了。

著录项

  • 来源
    《Journal of turbomachinery》 |2019年第6期|061003.1-061003.10|共10页
  • 作者单位

    Kawasaki Heavy Ind Co Ltd 1-1 Kawasaki Akashi Hyogo 6738666 Japan;

    Kawasaki Heavy Ind Co Ltd 1-1 Kawasaki Akashi Hyogo 6738666 Japan;

    Tokushima Bunri Univ 1314-1 Shido Sanuki Kagawa 7692193 Japan;

    Tokushima Bunri Univ 1314-1 Shido Sanuki Kagawa 7692193 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号