...
首页> 外文期刊>Journal of turbomachinery >Rotor-Stator Interactions in a 2.5-Stage Axial Compressor- Part Ⅱ: Impact of Aerodynamic Modeling on Forced Response
【24h】

Rotor-Stator Interactions in a 2.5-Stage Axial Compressor- Part Ⅱ: Impact of Aerodynamic Modeling on Forced Response

机译:2.5级轴流压气机中的转子-定子相互作用-第二部分:空气动力学模型对强迫响应的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The main objective of this study is the validation of numerical forced response predictions through experimental blade vibration measurements for higher order modes of a blade-integrated disk (blisk). To this end, a linearized and a nonlinear frequency domain CFD methods are used, as well as a tip timing measurement system. The focus is on the blade excitation by downstream vanes, in particular, because this study shows that the correct prediction of acoustic modes is of key importance in this case. The analysis of these modes is presented, both experimentally and numerically, in Part I of this publication. The grid independence study for the aerodynamic work on the blade surface conducted in this part shows a possible prediction uncertainty of more than 100% when a coarse grid is chosen. For the validation of the numerical setup, a study was performed using different turbulence and transition models. The results are compared to the measured performance map, to a 2D field traverse conducted with a pneumatic probe, and to data gained by unsteady pressure sensors mounted in the casing of the compressor. Flow features relevant for the prediction of blade stresses are best represented using the SST turbulence model in combination with the gamma-Re-Theta transition model. Nonlinear simulations with this setup are able to predict the blade stresses due to downstream excitation with an average difference of 23% compared to tip timing measurements. Single row linearized CFD methods have shown to be incapable of making a correct stress prediction when acoustic modes form a major part of the exciting mechanisms. In summary, this two-part publication proves the importance of acoustic rotor-stator interactions for blade vibrational stresses excited by downstream vanes in a state-of-the-art high-pressure compressor.
机译:这项研究的主要目的是通过对叶片集成盘(叶盘)的高阶模式进行实验性叶片振动测量来验证数值强迫响应预测。为此,使用了线性化和非线性频域CFD方法以及尖端定时测量系统。特别地,重点在于下游叶片对叶片的激励,因为这项研究表明,在这种情况下,正确预测声模至关重要。在本出版物的第一部分中,通过实验和数值方式对这些模式进行了分析。在此部分中进行的叶片表面气动工作的网格独立性研究表明,当选择粗网格时,可能的预测不确定性超过100%。为了验证数值设置,使用了不同的湍流和过渡模型进行了研究。将结果与测得的性能图,通过气动探头进行的2D场遍历以及由安装在压缩机外壳中的非稳定压力传感器获得的数据进行比较。与SST湍流模型结合使用γ-Re-Theta过渡模型可以最好地表示与叶片应力预测相关的流动特征。通过这种设置进行的非线性仿真能够预测由于下游激励而产生的叶片应力,与叶尖正时测量值相比,平均差异为23%。当声学模式构成激励机制的主要部分时,单行线性CFD方法已显示出无法做出正确的应力预测。总而言之,该由两部分组成的出版物证明了最新的高压压缩机中声学转子-定子相互作用对于下游叶片所激发的叶片振动应力的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号