首页> 外文期刊>Journal of thermal stresses >STRESS CHARACTERIZATION OF NONISOTHERMAL ELASTODYNAMICS FOR NONHOMOGENEOUS ANISOTROPIC BODY UNDER PLANE STRAIN CONDITIONS
【24h】

STRESS CHARACTERIZATION OF NONISOTHERMAL ELASTODYNAMICS FOR NONHOMOGENEOUS ANISOTROPIC BODY UNDER PLANE STRAIN CONDITIONS

机译:平面应变条件下非均质各向异性体的非等温弹性动力学的应力表征

获取原文
获取原文并翻译 | 示例
       

摘要

Stress characterization of non-isothermal elastodynamics for an anisotropic nonhomogeneous infinite cylinder under plane strain conditions is presented. The cylinder is referred to the Cartesian coordinates x(i) (i = 1, 2, 3) in which the axis of the cylinder is parallel to the x(3)-axis and a cross-section of the cylinder at x(3) = 0, denoted by C, is a domain of the time-dependent stresses S-ij = S-ij(x(alpha), t), [i, j = 1, 2, 3; alpha = 1, 2; x(alpha) is an element of C; t >= 0]. The density of the cylinder rho, the compliance tensor K-ijkl [i, j, k, l = 1, 2, 3], and the stress-temperature tensor M-ij depend on x(2) only, while a thermomechanical load that complies with the plane strain conditions, depends on (x(1), x(2)) is an element of C and time t >= 0 only. It is shown that S-ij = S-ij(x(alpha), t) is generated by a unique solution S-alpha beta = S-alpha beta(x(gamma), t), [alpha, beta, gamma = 1, 2; t >= 0] to a pure stress initial-boundary value problem of nonisothermal elastodynamics on C x [0, infinity), and the in-plane stress components S-alpha beta - S-alpha beta((A)) generate the out-of plane stress components S-i3 - S-i3((A)), [i = 1, 2, 3] provided the inner product of a compliance dependent tensor field kappa((i)(alpha beta)) = kappa((i)(alpha beta)) (x(2)) and the tensor S-alpha beta - S-alpha beta((A)) does not vanish; here, S-ij(A) = S-ij(A) (X-alpha, t), [i, j = 1, 2, 3; alpha = 1, 2; x(alpha) is an element of C; t >= 0] represents the actuation tensor field. Also, a body-force analogy for S-alpha beta = S-alpha beta(x(gamma), t) is formulated from which it follows that S-alpha beta = S-alpha beta(x(gamma), t) can be identified with a solution to a pure stress initial-boundary value problem of isothermal elastodynamics. The stress characterization presented here should prove useful in a study of stress waves in an infinite cylinder made of an anisotropic functionally graded material within both the isothermal and non-isothermal elastodynamics.
机译:提出了各向异性非均质无限圆柱体在平面应变条件下的非等温弹性动力学特征。圆柱体是指笛卡尔坐标x(i)(i = 1,2,3),其中圆柱体的轴平行于x(3)轴,圆柱体的横截面位于x(3) )= 0,用C表示,是随时间变化的应力的一个域S-ij = S-ij(x(alpha),t),[i,j = 1,2,3; alpha = 1,2; x(alpha)是C的元素; t> = 0]。圆柱体rho的密度,柔量张量K-ijkl [i,j,k,l = 1,2,3]和应力温度张量M-ij仅取决于x(2),而热机械载荷符合平面应变条件的变量,取决于(x(1),x(2))是C的元素,且时间t> = 0仅。结果表明,S-ij = S-ij(x(alpha),t)由唯一解生成。S-alpha beta = S-alpha beta(x(γ),t),[alpha,beta,gamma = 1、2; t> = 0]到C x [0,infinity)上的非等温弹性动力学的纯应力初始边界值问题,并且面内应力分量S-alpha beta-S-alpha beta((A))产生了平面应力分量S-i3-S-i3((A)),[i = 1,2,3]假设依从性张量场kappa((i)(alpha beta))= kappa( (i)(alpha beta))(x(2))和张量S-alpha beta-S-alpha beta((A))不消失;在这里,S-ij(A)= S-ij(A)(X-alpha,t),[i,j = 1,2,3; alpha = 1,2; x(alpha)是C的元素; t> = 0]表示驱动张量场。此外,针对S-alpha beta = S-alpha beta(x(gamma),t)的体力类比被公式化,由此得出S-alpha beta = S-alpha beta(x(gamma),t)可以通过等温弹性动力学的纯应力初始边界值问题的解决方案来确定。在等温弹性和非等温弹性力学中,此处介绍的应力表征在研究由各向异性功能梯度材料制成的无限圆柱体中的应力波时应被证明是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号