...
首页> 外文期刊>Journal of thermal stresses >Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity
【24h】

Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity

机译:基于非局部弹性的弯曲功能梯度纳米束的热机械振动

获取原文
获取原文并翻译 | 示例
           

摘要

In this article, thermal buckling and natural frequency of a curved functionally graded (FG) nanobeam in a thermal environment based on Eringen's theory is investigated. Dimension of structure is in small scale, its geometric is curved, and properties of material vary in radial direction. In order to develop differential equation and boundary condition, Hamilton's principle is adopted. Properties of material are a function of two variables of radial thickness and temperature. After developing equation of motion in thermal environment, analytical solution has been employed in order to obtain the amount of frequency and thermal buckling. Free vibration of a curved FG nanobeam subjected to in-plane thermal load may show zero frequency magnitude at a certain temperature, which specifies the existence of bifurcation type of instability. In numerical section, frequency responses have been studied one time based on temperature-dependent material property and another time based on temperature-independent material property and influences for parameters such as nonlocal parameter, power-law, mode number, temperature changes, and arc angle on natural frequency and critical temperature have been investigated. Results have shown that if properties of material are dependent on temperature, then expected frequency will be less than the case in which properties are independent of temperature. Performed validation certifies correctness of obtained results. Results indicate that critical temperature increasing the arc angle leads to a decrease in amount of dimensionless frequency, and this matter represents the importance of specification of critical temperature in curved structures.
机译:在本文中,基于Eringen的理论,研究了热环境中弯曲功能梯度(FG)纳米光束的热屈曲和固有频率。结构的尺寸很小,几何形状是弯曲的,并且材料的特性在径向方向上变化。为了发展微分方程和边界条件,采用汉密尔顿原理。材料的属性是径向厚度和温度的两个变量的函数。在建立热环境下的运动方程后,已采用解析解以获得频率和热屈曲量。弯曲的FG纳米光束在平面内热负荷下的自由振动在一定温度下可能显示零频率幅值,这表明存在分叉类型的不稳定性。在数值部分中,基于温度依赖的材料特性研究了一次频率响应,基于温度依赖的材料特性研究了另一时间,以及对诸如非局部参数,幂律,模数,温度变化和电弧角等参数的影响研究了自然频率和临界温度。结果表明,如果材料的特性取决于温度,则预期频率将小于特性与温度无关的情况。进行的验证证明所获得结果的正确性。结果表明,临界温度增加了圆弧角会导致无量纲频率量的减少,这表明在弯曲结构中确定临界温度的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号