首页> 外文期刊>Journal of thermal stresses >Thermal-mechanical analysis for confined HMX-based polymer-bonded explosives
【24h】

Thermal-mechanical analysis for confined HMX-based polymer-bonded explosives

机译:局限性HMX基聚合物键合爆炸物的热力学分析

获取原文
获取原文并翻译 | 示例
       

摘要

It is known that the reaction rate of the thermal decomposition of polymer-bonded explosives exposed to cook-off has a certain relation with temperature, confining pressure and some other factors, which were verified by many experiments. Temperature-dominated thermal-decomposition models were developed for various high explosives and applied to study their decomposition process, such as HMX- and TATB-based polymer-bonded explosives. These models have reasonable accuracy. For example, the multistep thermal-decomposition model of PBX 9501 (which consists of 95% HMX, 2.5% Estane and 2.5% BDNPA/F) proposed by Tarver considers decomposition of both HMX and polymer binders. The temperature-dominated thermal-decomposition model only applies to preignition thermal decomposition. After ignition occurs, the dominant mechanism of the reaction transforms to deflagration and subsequent explosion, where the effect of pressure can no longer be neglected. Furthermore, the time scale of deflagration and explosion (millisecond or microsecond) differs significantly from the time scale of slow thermal decomposition (hours or minutes). The numerical model of postignition phenomenon (deflagration and final explosion) is still under investigation and is far from maturity. The predicted violence scale resulting from thermal explosion does not agree with experiment very well. An alternative method is to conduct a thermal-mechanical analysis for preignition stage, which takes advantage of a developed temperature-dominated thermal-decomposition model, and to analyze the stress caused by quasi-static thermal expansion. Herein, a thermal-mechanical analysis is implemented for a one-dimensional time-to-explosion experiment (ODTX) and a scaled thermal explosion experiment (STEX) with HMX-based polymer-bonded explosives inside using the finite element method. Then, the finite element model is applied to investigate the thermal decomposition of PBX 9501 inside an explosive device exposed to cook-off. The regions that have maximum temperature, maximum hydrostatic pressure and maximum von Mises stress are identified based on simulation results, which can benefit future improvement of the explosive device.
机译:众所周知,暴露于炊具的聚合物 - 粘结炸药的热分解的反应速率与许多实验验证的温度,限制压力和一些其他因素有一定的关系。为各种高炸药开发了温度定向的热分解模型,并应用于研究其分解过程,例如HMX和TATB的聚合物键合炸药。这些型号的准确性合理。例如,PBX 9501的多步热分解模型(由Tarver提出的PBX 9501的MultiSeP热分解模型(由95%HMX,2.5%Estane和2.5%BDNPA / F组成)考虑了HMX和聚合物粘合剂的分解。温度主导的热分解模型仅适用于超久性热分解。发生点火后,反应的主要机理转化为脱透明和随后的爆炸,其中压力不再能被忽略。此外,燃烧和爆炸的时间量表(毫秒或微秒)显着不同于慢热分解的时间等级(小时或分钟)。接触现象(燃烧和最终爆炸)的数值模型仍在调查中,远未到期。热爆炸引起的预测的暴力量表并不同意实验。另一种方法是对通信阶段进行热机械分析,其利用开发的温度主导的热分解模型,并分析由准静态热膨胀引起的应力。在此,在使用有限元方法中,使用有限元法内与基于HMX的聚合物键合炸药的一维的爆炸实验(ODTX)和缩放的热爆炸实验(STEX)实施了热机械分析。然后,应用有限元模型来研究暴露于炊具的爆炸装置内的PBX 9501的热分解。基于仿真结果,鉴定了具有最高温度,最大静压压力和最大von误声应力的区域,这可以使未来的爆炸装置的改善有益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号