...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Thermodynamics-based Artificial Neural Networks for constitutive modeling
【24h】

Thermodynamics-based Artificial Neural Networks for constitutive modeling

机译:基于热力学的构成模型人工神经网络

获取原文
获取原文并翻译 | 示例

摘要

Machine Learning methods and, in particular, Artificial Neural Networks (ANNs) have demonstrated promising capabilities in material constitutive modeling. One of the main drawbacks of such approaches is the lack of a rigorous frame based on the laws of physics. This may render physically inconsistent the predictions of a trained network, which can be even dangerous for real applications. Here we propose a new class of data-driven, physics-based, neural networks for constitutive modeling of strain rate independent processes at the material point level, which we define as Thermodynamics-based Artificial Neural Networks (TANNs). The two basic principles of thermodynamics are encoded in the network's architecture by taking advantage of automatic differentiation to compute the numerical derivatives of a network with respect to its inputs. In this way, derivatives of the free-energy, the dissipation rate and their relation with the stress and internal state variables are hardwired in the architecture of TANNs. Consequently, our approach does not have to identify the underlying pattern of thermodynamic laws during training, reducing the need of large data-sets. Moreover the training is more efficient and robust, and the predictions more accurate. Finally and more important, the predictions remain thermodynamically consistent, even for unseen data. Based on these features, TANNs are a starting point for data-driven, physics-based constitutive modeling with neural networks. We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, using both hyper- and hypo-plasticity models. Strain hardening and softening are also considered for the hyper-plastic scenario. Detailed comparisons show that the predictions of TANNs outperform those of standard ANNs. Finally, we demonstrate that the implementation of the laws of thermodynamics confers to TANNs high robustness in the presence of noise in the training data, compared to standard approaches. TANNs' architecture is general, enabling applications to materials with different or more complex behavior, without any modification.
机译:机器学习方法,特别是人工神经网络(ANNS)在材料本构造中表现出有希望的能力。这种方法的主要缺点之一是基于物理规律缺乏严格的帧。这可能会呈现对训练有素的网络的预测,这对于真正的应用来说也可能是甚至危险的。在这里,我们提出了一种新的数据驱动,基于物理的神经网络,用于材料点水平的应变率独立过程的本构模拟,我们将其定义为基于热力学的人工神经网络(Tanns)。通过利用自动差异化来计算网络的数值衍生物,在网络的架构中编码了两种热力学原理,以将网络的数值导数相对于其输入计算。以这种方式,自由能的衍生物,耗散率和与压力和内部状态变量的关系在丁南的架构中都是硬连线。因此,我们的方法不必在培训期间识别热力学法的潜在模式,从而减少大数据集的需要。此外,培训更有效和稳健,并且预测更准确。最后还有更重要的是,即使对于看不见的数据,预测仍然是热力学上的一致性。基于这些特征,Tanns是与神经网络的基于数据驱动的物理基础建模的起点。我们使用超塑性模型展示了Tanns为塑料塑料材料进行建模的广泛适用性。对于超塑性场景,也考虑了应变硬化和软化。详细的比较表明,Tanns的预测优于标准Anns的预测。最后,我们证明,与标准方法相比,热力学定律赋予培训数据噪声存在的高稳健性。 Tanns的架构是一般的,使应用程序能够以不同或更复杂的行为,无需任何修改。

著录项

  • 来源
    《Journal of the Mechanics and Physics of Solids》 |2021年第2期|104277.1-104277.28|共28页
  • 作者单位

    Insaatt de Recherche en Genie Civil et Mecanique UMR 6183 CNRS Ecole Centrale de Nantes Universite de Nantes 1 rue de la Noee F-44300 Nantes France Ingerop Conseil et Ingenierie 18 rue des Deux Gores F-92500 Rueil-Mahnaison France;

    Insaatt de Recherche en Genie Civil et Mecanique UMR 6183 CNRS Ecole Centrale de Nantes Universite de Nantes 1 rue de la Noee F-44300 Nantes France;

    LMV UMR 8100 Universite de Versailles et Saint-Quentin 55 avenue de Paris F-78035 Versailles France;

    Ingerop Conseil et Ingenierie 18 rue des Deux Gores F-92500 Rueil-Mahnaison France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data-driven modeling; Machine learning; Artificial neural network; Thermodynamics; Constitutive model;

    机译:数据驱动建模;机器学习;人工神经网络;热力学;本构模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号