...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >A holistic inverse approach based on a multi-objective function optimisation model to recover elastic-plastic properties of materials from the depth-sensing indentation test
【24h】

A holistic inverse approach based on a multi-objective function optimisation model to recover elastic-plastic properties of materials from the depth-sensing indentation test

机译:基于多目标函数优化模型的整体逆方法,从深度传感压痕试验中回收材料的弹性塑性特性

获取原文
获取原文并翻译 | 示例
           

摘要

Recent years have seen an increased interest in the mechanical characterisation of materials via the inverse analysis of depth-sensing indentation data: however, at low-loads both the reaction forces measured by the instrument and the contact evolution at the indenter material interface may be severely affected by indentation size effects (ISEs). Notwithstanding the knowledge of ISE, the inverse analyses proposed to date have failed to investigate the divergence between the small-scale properties measured via indentation and the large-scale properties extracted from other techniques, e.g. tensile testing. Therefore, this study investigates the sensitivity of an inverse analysis methodology to the indentation size in relation to the size of the microstructure. The proposed inverse analysis approach is based on a multi-objective function (MOF) optimisation model that finds the combination of material properties (Young's modulus, yield stress and strain-hardening exponent) that provides the best fit to both the experimental load-displacement (P-h) curve extracted from the indentation instrument and pile-up profile of the residual imprint measured with an atomic force microscope. Therefore, the piling-up/sinking-in effect, which is strongly linked to the plastic hardening behaviour of the indented material, is considered to address the non-uniqueness issue of the inverse analysis of indentation. A Berkovich indenter was used to measure the near surface properties of three different materials, including a titanium alloy (Ti-6A1-4V), chromium-molybdenum-vanadium steel (CrMoV) and high purity copper (C110); materials have been selected to represent a wide range of ductile metallic materials so as to assess the generality of the MOF model. (C) 2019 Elsevier Ltd. All rights reserved.
机译:近年来已经通过深度感测压痕数据的逆分析来看,材料对材料的力学表征的兴趣增加了:但是,在低负荷下,通过仪器测量的反作用力和压头材料界面处的接触展开可能是严重的受缩进尺寸效应的影响(ISES)。尽管是ISE的知识,所提出的迄今为止的反向分析未能研究通过压痕测量的小规模特性和从其他技术提取的大规模性质,例如,从其他技术提取的大规模性质。拉伸测试。因此,本研究研究了与微观结构的大小相对于缩进尺寸的逆分分析方法的敏感性。所提出的逆分析方法基于多目标函数(MOF)优化模型,该模型可找到材料性质(杨氏模量,屈服应力和应变硬化指数)的组合,其提供最适合实验载荷 - 位移( pH)从压痕仪中提取的曲线和用原子力显微镜测量的残余印记的堆积曲线。因此,认为堆叠/下沉到凹进材料的塑料硬化行为与凹进材料的塑性硬化行为有关,以解决压痕逆分析的非唯一性问题。使用Berkovich Indenter来测量三种不同材料的近表面性质,包括钛合金(Ti-6a1-4v),铬 - 钼 - 钒钢(CrMov)和高纯度铜(C110);已选择材料以表示广泛的延性金属材料,以评估MOF模型的一般性。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号