...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Material models for the thermoplastic material behaviour of a dual-phase steel on a microscopic and a macroscopic length scale
【24h】

Material models for the thermoplastic material behaviour of a dual-phase steel on a microscopic and a macroscopic length scale

机译:双相钢对微观型和宏观长度的热塑性材料行为的材料模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Material models for the thermoplastic material behaviour of a dual-phase steel on a microscopic and a macroscopic length scale are developed in a continuum mechanics framework. Since the microstructure of the material is composed of the two phases martensite and ferrite, appropriate model assumptions on the behaviour of the phases have to be made. In the present model, it is assumed that the martensitic phase behaves purely elastic and the temperature dependent yielding behaviour of the dual-phase steel is determined by the ferritic phase. In this phase, plastic deformation is the result of the movement of dislocations in the atomic lattice on preferred planes in preferred directions. As experiments have shown, the resistance to this movement is determined by an evolving dislocation arrangement as well as by the atomic lattice itself. Based on this experimental observation, dislocation densities are introduced as state variables to formulate a constitutive equation for the resistance to plastic deformation and to capture the dependence of the material behaviour on deformation and temperature history on a microscopic length scale. By analysing the elementary processes of multiplication and annihilation of dislocations and the dependence of these processes on temperature and deformation rate, evolution equations for the dislocation densities are formulated. Thermal activation is used to describe these dependences. Supplying constitutive equations for the Helmholtz free energy and the heat flux, the initial boundary value problem for the thermomechanically coupled problem on a microscopic length scale is formulated. To validate the developed material model, processes applied in experiments with single crystal specimens of pure iron are simulated and a comparison is made between experimental and numerical results. The material model on a macroscopic length scale is motivated by the model on a microscopic length scale. A state variable representing the total dislocation density is introduced to describe the influence of the deformation and temperature history on the material behaviour. For the validation of the material model, a comparison is made between experimental results obtained from forming of sheet metal specimens and the numerical model prediction. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在连续的力学框架中开发了用于微观型和宏观长度的双相钢的热塑性材料行为的材料模型。由于材料的微观结构由两阶段马氏体和铁氧体组成,因此必须对阶段的行为的适当模型假设。在本模型中,假设马氏体相表现得纯度弹性,并且通过铁素体相确定双相钢的温度依赖性行为。在该阶段中,塑性变形是在优选方向上的优选平面上的原子晶格中位错在优选的平面上的结果。如实验所示,通过演化的位错布置以及原子晶格本身来确定对该运动的抵抗力。基于该实验观察,将位错密度作为状态变量引入,以配制对塑性变形的抗性的组成方程,并捕获材料行为对微观长度的变形和温度历史的依赖性。通过分析倍增和湮灭的基本过程以及这些方法对温度和变形速率的依赖性,配制了位错密度的演化方程。热激活用于描述这些依赖性。为Helmholtz自由能和热通量提供本构关系方程,制定了在微观长度尺度上的热机械耦合问题的初始边值问题。为了验证发达的材料模型,模拟了用单晶标本应用的方法,并在实验和数值结果之间进行比较。宏观长度尺度上的材料模型由微观长度尺度的模型激励。引入代表总位错密度的状态变量来描述变形和温度历史对材料行为的影响。对于材料模型的验证,在从成型金属板样本和数值模型预测获得的实验结果之间进行比较。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号