首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Energy based mechano-electrophysiological model of CNS damage at the tissue scale
【24h】

Energy based mechano-electrophysiological model of CNS damage at the tissue scale

机译:基于能量的中枢神经系统中枢神经系统损伤的机械-电生理模型

获取原文
获取原文并翻译 | 示例
       

摘要

Injuries to the central nervous system (CNS) have become a major health challenge in our society. Such injuries can affect the electrophysiological properties, and thus functional behaviour of the nervous system. Most of the related computational studies to date have mainly been focussed on the cellular, subcellular or axonal scales. Although essential for understanding the characteristics of spinal cord injury and traumatic brain injury at the cellular level, these approaches suffer from a lack of scalability to meso- and macroscopic scenarios. To this end, this work presents a tissue level framework describing the coupled mechanical and electrophysiological behaviour of CNS tissue. The proposed mechanical large deformation constitutive model accounts for strain rate dependency, viscous effects and mechanical damage within a thermodynamically consistent framework. Coupled to it, a FitzHugh-Nagumo based model that includes axonal fibre informed anisotropic conduction describes the electrophysiological behaviour. The mechanical model is first calibrated against experimental deformation measurements of spinal cord white matter. The complete framework is then calibrated and used to study the mechano-electrophysiological coupling in spinal cord samples subjected to tension-free relaxation tests by considering electrophysiological damage as a function of mechanical energetic terms. The flexibility of the proposed model is illustrated with the case of mechano-electrophysiological coupling in spinal cord subjected to blast loading, After validation of the coupled model, the mechanical parameters are identified for white matter and an analysis of the influence of axonal dispersion on anisotropic AP conduction in an in silico rat model is presented. This work provides a novel mechano-electrophysiological framework able to model the mechanics of spinal cord and brain tissue and its translation into electrophysiological dysfunction through energetic terms at the tissue level. (C) 2019 The Authors. Published by Elsevier Ltd.
机译:中枢神经系统(CNS)的伤害已成为我们社会中的主要健康挑战。此类伤害会影响电生理特性,进而影响神经系统的功能行为。迄今为止,大多数相关的计算研究主要集中在细胞,亚细胞或轴突尺度上。尽管在细胞水平上了解脊髓损伤和脑外伤的特征必不可少,但这些方法仍缺乏对中观和宏观情景的可扩展性。为此,这项工作提出了一个组织水平的框架,描述了中枢神经系统组织的机械和电生理行为。所提出的机械大变形本构模型考虑了应变率依赖性,粘性效应和热力学一致框架内的机械损伤。与之耦合的是基于FitzHugh-Nagumo的模型,该模型包括轴突纤维通知的各向异性传导,描述了电生理行为。首先针对脊髓白质的实验变形测量对机械模型进行校准。然后对整个框架进行校准,并通过考虑电生理损伤与机械能量项的函数关系,对用于经受无张力松弛测试的脊髓样品中的机械-电生理耦合进行研究。爆炸载荷作用下脊髓的机械-电生理耦合,说明了所提出模型的灵活性。对耦合模型进行验证后,确定了白质的力学参数,并分析了轴突弥散对各向异性的影响。提出了在计算机大鼠模型中的AP传导。这项工作提供了一个新颖的机械-电生理框架,能够对脊髓和脑组织的力学进行建模,并通过在组织水平上的高能术语将其转化为电生理功能障碍。 (C)2019作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号