首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Microstructural constitutive model for polycrystal viscoplasticity in cold and warm regimes based on continuum dislocation dynamics
【24h】

Microstructural constitutive model for polycrystal viscoplasticity in cold and warm regimes based on continuum dislocation dynamics

机译:基于连续位错动力学的冷热态多晶粘塑性微观结构本构模型

获取原文
获取原文并翻译 | 示例
       

摘要

Viscoplastic flow of polycrystalline metallic materials is the result of motion and interaction of dislocations, line defects of the crystalline structure. In the microstructural/physics-based constitutive model presented in this paper, the main underlying microstructural processes influencing viscoplastic deformation and mechanical properties of metals in cold and warm regimes are statistically described by the introduced sets of postulates/axioms for continuum dislocation dynamics (CDD). Three microstructural (internal) state variables (MSVs) are used for statistical quantifications of different types/species of dislocations by the notion of dislocation density. Considering the mobility property of dislocations, they are categorized to mobile and (relatively) immobile dislocations. Mobile dislocations carry the plastic strain (rate), while immobile dislocations contribute to plastic hardening. Moreover, with respect to their arrangement, dislocations are classified to cell and wall dislocations. Cell dislocations are those that exist inside cells/subgrains, and wall dislocations are packed in (and consequently formed) the subgrain walls/boundaries. Therefore, the MSVs incorporated in this model are cell mobile, cell immobile and wall immobile dislocation densities. The evolution of these internal variables is calculated by means of adequate equations that characterize the dislocation processes dominating material behavior during cold and warm monotonic viscoplastic deformation. The constitutive equations are then numerically integrated: and the constitutive parameters are determined/fitted for a widely used ferritic-pearlitic steel (20MnCr5). (C) 2018 Elsevier Ltd. All rights reserved.
机译:多晶金属材料的粘塑性流动是位错,晶体结构的线缺陷的运动和相互作用的结果。在本文介绍的基于微观结构/物理的本构模型中,通过介绍连续体位错动力学(CDD)的假定/公理集,从统计角度描述了影响冷,热状态下金属的粘塑性变形和机械性能的主要潜在微观结构过程。 。通过位错密度的概念,使用三个微结构(内部)状态变量(MSV)对位错的不同类型/种类进行统计量化。考虑到位错的移动性,将其分为移动位错和(相对)固定位错。移动性位错承载塑性应变(速率),而固定性位错有助于塑性硬化。而且,关于它们的排列,位错被分类为细胞和壁的位错。细胞位错是存在于细胞/亚晶粒内部的位错,壁位错堆积在(因此形成的)亚晶粒壁/边界中。因此,纳入该模型的MSV为细胞移动性,细胞固定性和壁固定性位错密度。这些内部变量的演变是通过适当的方程式计算的,这些方程式描述了在冷热单调粘塑性变形过程中支配材料行为的位错过程。然后对本构方程进行数值积分:并确定/拟合了广泛使用的铁素体-珠光体钢(20MnCr5)的本构参数。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号