...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Atomistically motivated interface model to account for coupled plasticity and damage at grain boundaries
【24h】

Atomistically motivated interface model to account for coupled plasticity and damage at grain boundaries

机译:基于原子动力的界面模型,考虑了可塑性和晶界损伤的耦合

获取原文
获取原文并翻译 | 示例
           

摘要

Grain boundary (GB) characteristics play an important role in the determination and prediction of material behavior, especially when it comes to nanocrystalline metals and ceramics. The main goal of this work is to develop a general interface model to accurately incorporate grain boundary sliding as well as intergranular fracture as two main phenomena in characterizing the grain boundary. To gain a deeper insight into the behavior of different grain boundaries, molecular dynamics (MD) simulations are utilized for mode I and mode II loadings. By adding the unloading path to the MD simulations it was possible to differentiate between different active mechanisms at the GB. Current MD investigations motivate a model which accounts for anisotropic plasticity and damage within the grain boundary to capture the complex interface behavior. Therefore, a two-surface formulation is utilized in which damage and plasticity at the interface are coupled in a thermodynamically consistent way. The parameters for the introduced interface model are determined using the MD simulations based on an embedded atom potential. Finally, the calibrated interface model is implemented into a cohesive zone (CZ) element. In order to show the applicability of the proposed interface model, several numerical studies are carried out. A volume element is selected which depicts a point in an arbitrary polycrystalline material at the macroscale. The results of these studies reveal interesting behaviors of the selected volume element which can be used, e.g., to determine the parameters of a continuum damage model at the macroscale. (C) 2018 Elsevier Ltd. All rights reserved.
机译:晶界(GB)特性在确定和预测材料行为方面起着重要作用,尤其是涉及纳米晶体金属和陶瓷时。这项工作的主要目的是开发一个通用的界面模型,以准确地结合晶界滑动和晶间断裂作为表征晶界的两个主要现象。为了更深入地了解不同晶界的行为,分子动力学(MD)模拟用于模式I和模式II加载。通过将卸载路径添加到MD仿真中,可以在GB上区分不同的主动机制。当前的MD研究激发了一个模型,该模型考虑了各向异性可塑性和晶界内的损伤,以捕获复杂的界面行为。因此,使用了两面配方,其中界面处的损伤和塑性以热力学一致的方式耦合。引入的接口模型的参数是使用MD模拟基于嵌入式原子电势确定的。最后,将校准后的界面模型实现为内聚区(CZ)元素。为了显示所提出的接口模型的适用性,进行了一些数值研究。选择一个体积元素,它在宏观上描绘了任意多晶材料中的一个点。这些研究的结果揭示了所选体积元素的有趣行为,这些行为可用于例如在宏观尺度上确定连续损伤模型的参数。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号