首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum
【24h】

Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum

机译:基于分子动力学模拟的铝晶间断裂过程内聚区表示

获取原文
获取原文并翻译 | 示例
       

摘要

A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics (MD) simulations. An MD model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat Sigma 99 [I 10] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load. the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element-an atomistic analog to a continuum cohesive zone model element-the results from the MD simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. (c) 2006 Elsevier Ltd. All rights reserved.
机译:从原子分子动力学(MD)模拟中提取了可能嵌入到晶粒间断裂微观问题的粘性带模型中的牵引位移关系。建立了用于稳态条件下裂纹扩展的MD模型,以分析铝中沿平坦Sigma 99 [I 10]对称倾斜晶界的晶间断裂。承受静水压力。模拟显示了沿晶界在两个相反方向上的不对称裂纹扩展。在一个方向上,裂纹通过劈裂以脆性方式扩展,几乎没有或没有位错发射,而在另一个方向上,扩展通过变形孪生机制具有延展性。这种行为与Rice准则有关裂纹尖端处的开裂与位错钝化过渡相一致。孪晶与位错滑移的偏好与Tadmor和Hai标准的预测一致。与有限元计算的比较表明,在模型给定的边界条件下,脆性裂纹尖端周围的应力场遵循预期的弹性解,而孪生裂纹尖端周围的应力场具有较强的塑性作用。通过定义内聚区体积元素-连续体内聚区模型元素的原子模拟-重铸MD模拟的结果以获得平均连续性牵引-位移关系,以表示沿特征长度的内聚区相互作用韧性和脆性脱粘情况下晶界界面的变化。 (c)2006 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号