首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Dynamic void nucleation and growth in solids: A self-consistent statistical theory
【24h】

Dynamic void nucleation and growth in solids: A self-consistent statistical theory

机译:固体中动态空洞形核和生长:一种自洽的统计理论

获取原文
获取原文并翻译 | 示例
       

摘要

We present a framework for a self-consistent theory of spall fracture in ductile materials, based on the dynamics of void nucleation and growth. The constitutive model for the material is divided into elastic and "plastic" parts, where the elastic part represents the volumetric response of a porous elastic material, and the "plastic" part is generated by a collection of representative volume elements (RVEs) of incompressible material. Each RVE is a thick-walled spherical shell, whose average porosity is the same as that of the surrounding porous continuum, thus simulating void interaction through the resulting lowered resistance to further void growth. All voids nucleate and grow according to the appropriate dynamics for a thick-walled sphere made of incompressible material. The macroscopic spherical stress in the material drives the response in all volume elements, which have a distribution of critical stresses for void nucleation, and the statistically weighted sum of the void volumes of all RVEs generates the global porosity. Thus, macroscopic pressure, porosity, and a distribution of growing microscopic voids are fully coupled dynamically. An example is given for a rate-independent, perfectly plastic material. The dynamics of void growth gives rise to a rate effect in the macroscopic material even though the parent material is rate independent.
机译:我们提供了一个基于空洞形核和生长动力学的韧性材料剥落破裂自洽理论的框架。材料的本构模型分为弹性部分和“塑料”部分,其中弹性部分代表多孔弹性材料的体积响应,“塑料”部分由不可压缩的代表性体积元素(RVE)的集合生成材料。每个RVE是一个厚壁球形壳,其平均孔隙率与周围的多孔连续体的孔隙率相同,从而通过降低的对进一步孔隙生长的抵抗力来模拟孔隙相互作用。对于由不可压缩材料制成的厚壁球体,所有空隙都根据适当的动力学成核并增长。材料中的宏观球形应力驱动所有体积元素中的响应,这些元素具有用于空隙形核的临界应力分布,并且所有RVE的空隙体积的统计加权总和生成整体孔隙率。因此,宏观压力,孔隙率和增长的微观空隙的分布是动态地完全耦合的。给出了一个与速率无关的完美塑性材料的示例。即使母体材料与速率无关,空隙生长的动力学也会在宏观材料中产生速率效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号