首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling
【24h】

Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling

机译:挤压钨合金的异质变形和剥落:板冲击实验和晶体塑性建模

获取原文
获取原文并翻译 | 示例
       

摘要

The role of microstructure in the dynamic deformation and fracture of a dual phase, polycrystalline tungsten alloy under high-rate impact loading is investigated via experiments and modeling. The material studied consists of pure tungsten crystals embedded in a ductile binder alloy comprised of tungsten, nickel, and iron. The tungsten crystals are elongated in a preferred direction of extrusion during processing. Plate impact tests were conducted on samples oriented either perpendicular or parallel to the extrusion direction. Spatially resolved interferometric data from these tests were used to extract wave propagation behavior and spall strength dependent upon position in the sample microstructure. Finite element simulations of impact and spall in digitally reproduced microstructural geometries were conducted in parallel with the experiments. Finite deformation crystal plasticity theory describes the behavior of the pure tungsten and binder phases, and a stress- and temperature-based cohesive zone model captures fracture at grain and phase boundaries in the microstructure. In results from both experiments and modeling, the grain orientations affect the free-surface velocity profile and spall behavior. Some aspects of distributions of free-surface velocity and spall strength among different microstructure configurations are qualitatively similar between experimental and numerical results, while others are not as a result of differing scales of resolution and modeling assumptions. Following a comparison of experimental and numerical results for different microstructures, intergranular fracture is identified as an important mechanism underlying the spall event.
机译:通过实验和模型研究了微观结构在高速冲击载荷下双相多晶钨合金的动态变形和断裂中的作用。研究的材料由嵌入在由钨,镍和铁组成的延展性粘结剂合金中的纯钨晶体组成。在加工过程中,钨晶体在优选的挤出方向上伸长。在垂直于或平行于挤出方向取向的样品上进行板冲击试验。这些测试的空间分辨干涉数据用于提取波传播行为和剥落强度,具体取决于样品微结构中的位置。与实验同时进行了数字复制的微观结构几何形状中冲击和剥落的有限元模拟。有限变形晶体可塑性理论描述了纯钨和粘结剂相的行为,基于应力和温度的内聚区模型捕获了微观结构中晶粒和相界处的断裂。从实验和建模的结果来看,晶粒取向都会影响自由表面速度分布和剥落行为。实验结果和数值结果之间,不同微观结构构型的自由表面速度和剥落强度分布的某些方面在质量上相似,而其他方面则不是分辨率和建模假设尺度不同的结果。在比较了不同微观结构的实验和数值结果之后,晶间断裂被认为是剥落事件的重要机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号