首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Cohesive zone laws for void growth - II. Numerical field projection of elasto-plastic fracture processes with vapor pressure
【24h】

Cohesive zone laws for void growth - II. Numerical field projection of elasto-plastic fracture processes with vapor pressure

机译:空隙增长的粘性区定律-II。蒸气压弹塑性断裂过程的数值场投影

获取原文
获取原文并翻译 | 示例
       

摘要

Modeling ductile fracture processes using Curson-type cell elements has achieved considerable success in recent years. However, incorporating the full mechanisms of void growth and coalescence in cohesive zone laws for ductile fracture still remains an open challenge. In this work, a planar field projection method, combined with equilibrium field regularization, is used to extract crack-tip cohesive zone laws of void growth in an elastic-plastic solid. To this end, a single row of void-containing cell elements is deployed directly ahead of a crack in an elastic-plastic medium subjected to a remote K-field loading; the macroscopic behavior of each cell element is governed by the Gurson porous material relation, extended to incorporate vapor pressure effects. A thin elastic strip surrounding this fracture process zone is introduced, from which the cohesive zone variables can be extracted via the planar field projection method. We show that the material's initial porosity induces a highly convex traction-separation relationship - the cohesive traction reaches the peak almost instantaneously and decreases gradually with void growth, before succumbing to rapid softening during coalescence. The profile of this numerically extracted cohesive zone law is consistent with experimentally determined cohesive zone law in Part 1 for multiple micro-crazing in HIPS. In the presence of vapor pressure, both the cohesive traction and energy are dramatically lowered; the shape of the cohesive zone law, however, remains highly convex, which suggests that diffusive damage is still the governing failure mechanism.
机译:近年来,使用Curson型单元元件对延性断裂过程进行建模已经取得了相当大的成功。但是,在塑性区定律中将空洞生长和聚结的全部机制纳入韧性延展性断裂仍然是一个挑战。在这项工作中,将平面场投影方法与平衡场正则化相结合,用于提取弹塑性固体中空隙增长的裂纹尖端内聚区定律。为此,将单行含空隙的单元元件直接部署在受到远程K场载荷的弹塑性介质中的裂纹之前。每个单元元件的宏观行为由Gurson多孔材料关系决定,并扩展到包含蒸气压效应。引入围绕该断裂过程区域的薄弹性带,可通过平面场投影法从中提取内聚区域变量。我们表明,材料的初始孔隙率引起了高度凸的牵引力-分离关系-内聚牵引力几乎瞬时达到峰值,并随着空隙的增长而​​逐渐减小,然后在聚结期间屈服于快速软化。此数字提取的粘合带定律的轮廓与第1部分中针对HIPS中的多个微裂纹的实验确定的粘合带定律一致。在存在蒸汽压力的情况下,内聚力和能量都大大降低了。然而,内聚区定律的形状仍然是高度凸的,这表明扩散破坏仍然是控制破坏的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号