首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Interfacial energy and dissipation in martensitic phase transformations. Part I: Theory
【24h】

Interfacial energy and dissipation in martensitic phase transformations. Part I: Theory

机译:马氏体相变中的界面能和耗散。第一部分:理论

获取原文
获取原文并翻译 | 示例
       

摘要

A model of evolving martensitic microstructures is formulated that incorporates the interfacial energy and dissipation on three different scales corresponding to the grain boundaries attained by martensite plates, the interfaces between austenite and martensite plates, and the twin interfaces within martensite plates. Three different time scales are also considered in order to clarify the meaning of rate-independent dissipation related to instabilities at more refined temporal and spatial scales. On the slowest time scale, the process of deformation and martensitic phase transformation is investigated as being composed of segments of smooth quasi-static evolution separated by sudden jumps associated with creation or annihilation of interfaces. A general evolution rule is used in the form of minimization of the incremental energy supply to the whole compound thermodynamic system, including the rate-independent dissipation. Close relationship is shown between the evolution rule and the thermodynamic condition for stability of equilibrium, with no a priori assumption on convexity of the dissipation function. It is demonstrated that the extension of the minimum principle from the first-order rates to small but finite increments requires a separate symmetry restriction imposed on the state derivative of the dissipation function. Formulae for the dissipation associated with annihilation of interfaces are proposed that exhibit limited path-independence and satisfy that symmetry requirement. By exploiting the incremental energy minimization rule with the help of the transport theorems, local propagation conditions are derived for both planar and curved phase transformation fronts. The theory serves as a basis for the algorithm for calculation of the stress-induced evolution of martensitic microstructures along with their characteristic dimensions and related hysteresis loops in shape memory alloys; the examples are given in Part II of the paper.
机译:建立了演化的马氏体微观结构模型,该模型结合了三种不同尺度的界面能和耗散,分别对应于马氏体板所获得的晶界,奥氏体与马氏体板之间的界面以及马氏体板内的双界面。为了阐明在更精细的时间和空间尺度上与不稳定性相关的速率无关耗散的含义,还考虑了三个不同的时间尺度。在最慢的时间尺度上,研究了变形和马氏体相变的过程,该过程由光滑的准静态演化段组成,这些段由与界面的创建或an灭相关的突然跳跃分隔开。使用一般的演变规律,其形式是将对整个复合热力学系统的增量能量供应(包括与速率无关的耗散)最小化。演化规则与平衡稳定性的热力学条件之间显示出紧密的关系,而没有先验假设耗散函数的凸性。证明最小原理从一阶速率到小但有限的增量的扩展要求对耗散函数的状态导数施加单独的对称约束。提出了与an灭相关的耗散公式,该公式具有有限的路径独立性并满足对称性要求。通过借助传输定理利用增量能量最小化规则,可以得出平面和弯曲相变前沿的局部传播条件。该理论为计算形状记忆合金中马氏体微观结构的应力诱发演化及其特征尺寸和相关磁滞回线的算法奠定了基础。示例在本文的第二部分中给出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号