首页> 外文期刊>Journal of the Mechanics and Physics of Solids >On evolving deformation microstructures in non-convex partially damaged solids
【24h】

On evolving deformation microstructures in non-convex partially damaged solids

机译:关于非凸部分破坏的固体中的演化变形微观结构

获取原文
获取原文并翻译 | 示例
       

摘要

The paper outlines a relaxation method based on a particular isotropic microstructure evolution and applies it to the model problem of rate independent, partially damaged solids. The method uses an incremental variational formulation for standard dissipative materials. In an incremental setting at finite time steps, the formulation defines a quasi-hyperelastic stress potential. The existence of this potential allows a typical incremental boundary value problem of damage mechanics to be expressed in terms of a principle of minimum incremental work. Mathematical existence theorems of minimizers then induce a definition of the material stability in terms of the sequential weak lower semicontinuity of the incremental functional. As a consequence, the incremental material stability of standard dissipative solids may be defined in terms of weak convexity notions of the stress potential. Furthermore, the variational setting opens up the possibility to analyze the development of deformation microstructures in the post-critical range of unstable inelastic materials based on energy relaxation methods. In partially damaged solids, accumulated damage may yield non-convex stress potentials which indicate instability and formation of fine-scale microstructures. These micro-structures can be resolved by use of relaxation techniques associated with the construction of convex hulls. We propose a particular relaxation method for partially damaged solids and investigate it in one- and multi-dimensional settings. To this end, we introduce a new isotropic microstructure which provides a simple approximation of the multi-dimensional rank-one convex hull. The development of those isotropic microstructures is investigated for homogeneous and inhomogeneous numerical simulations.
机译:本文概述了一种基于特定各向同性微观结构演变的松弛方法,并将其应用于与速率无关,部分受损的固体的模型问题。该方法对标准耗散材料使用增量变化公式。在有限时间步长的增量设置中,公式定义了准超弹性应力势。这种潜力的存在允许以最小增量功的原理来表达典型的损伤力学增量边界值问题。最小化器的数学存在性定理然后根据递增泛函的连续弱下半连续性得出了材料稳定性的定义。结果,可以根据应力势的弱凸度概念定义标准耗散固体的增量材料稳定性。此外,变分设置为基于能量松弛方法分析不稳定非弹性材料的后临界范围内的变形微观结构的发展提供了可能性。在部分损坏的固体中,累积的损坏可能会产生非凸应力势,这表明不稳定性和形成了微尺度的微结构。这些微结构可以通过使用与凸包构造相关的松弛技术来解决。我们针对部分损坏的固体提出了一种特殊的松弛方法,并在一维和多维环境下对其进行了研究。为此,我们介绍了一种新的各向同性的微观结构,它提供了多维秩一凸包的简单近似。对于均质和非均质的数值模拟,研究了各向同性微结构的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号