首页> 外文期刊>Journal of the Mechanics and Physics of Solids >On the importance of surface elastic contributions to the flexural rigidity of nanowires
【24h】

On the importance of surface elastic contributions to the flexural rigidity of nanowires

机译:关于表面弹性对纳米线弯曲刚度的贡献的重要性

获取原文
获取原文并翻译 | 示例
       

摘要

We present a theoretical model to calculate the flexural rigidity of nanowires from three-dimensional elasticity theory that incorporates the effects of surface stress and surface elasticity. The unique features of the model are that it incorporates, through the second moment, the heterogeneous nature of elasticity across the nanowire cross section, and that it accounts for transverse surface-stress-induced relaxation strains. The model is validated by comparison to benchmark atomistic calculations, existing one- dimensional surface elasticity theories based on the Young-Laplace equation, and also three-dimensional surface elasticity theories that assume homogeneous elastic properties across the nanowire cross section via three examples: surface-stress-induced axial relaxation, resonant properties of unstrained, strained and top-down nanowires, and buckling of nanowires. It is clearly demonstrated that the one-dimensional Young-Laplace models lead to errors of varying degrees for all of the boundary value problems considered because they do not account for transverse surface stress effects, and it is also shown that the Young-Laplace model results from a specific approximation of the proposed formulation. The three-dimensional surface elasticity model of Dingreville et al. (2005) is found to be more accurate than the Young-Laplace model, though both lose accuracy for ultrasmall ( < 5 nm diameter) nanowires where the heterogeneous nature of the cross section elasticity becomes important. Overall, the present work demonstrates that continuum mechanics can be utilized to study the elastic and mechanical behavior and properties of ultrasmall nanowires if surface elastic contributions to the heterogeneous flexural rigidity are accounted for.
机译:我们提出了一个理论模型,该模型从三维弹性理论(包括表面应力和表面弹性的影响)计算出纳米线的抗弯刚度。该模型的独特之处在于,它在第二时刻融合了纳米线横截面的弹性的非均质性,并解释了横向表面应力引起的松弛应变。通过与基准原子计算,基于Young-Laplace方程的现有一维表面弹性理论以及通过三个示例假设跨纳米线横截面具有均质弹性的三维表面弹性理论进行比较,验证了该模型的有效性。应力引起的轴向松弛,未应变,应变和自上而下的纳米线的共振特性以及纳米线的屈曲。可以清楚地证明,一维Young-Laplace模型对于所有考虑的边值问题都会导致不同程度的误差,因为它们没有考虑横向表面应力的影响,并且还表明Young-Laplace模型的结果从拟议公式的具体近似中得出。 Dingreville等人的三维表面弹性模型。 (2005)被发现比Young-Laplace模型更精确,尽管两者对于超小(直径<5 nm直径)纳米线都​​失去了准确性,其中截面弹性的异质性变得很重要。总的来说,本研究表明,如果考虑到表面弹性对非均质挠曲刚度的贡献,则可以利用连续力学来研究超小型纳米线的弹性和力学行为以及性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号