...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems
【24h】

Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems

机译:FCC系统中位错解离,堆积断层形成,位错滑移和反应的原子确定相场建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical one as based on the Peach-Koehler force.
机译:当前工作的目的是开发一种相场模型,用于单晶中的位错解离,滑移和堆垛层错的形成,本着计算材料设计的精神,可以通过原子或从头算方法确定。当前的方法特别是基于周期性的微弹性(Wang和Jin,2001; Bulatov和Cai,2006; Wang和Li,2010)来模拟位错线通过其(残余)应变场的强烈的非局部弹性相互作用。这些应变场又取决于相场,该相场用于参数化位错线和堆垛层错中存储的能量。在“接口”能量概念和Cahn and Hilliard(1958)模型的帮助下,对这种能量存储进行了建模(另请参见Allen和Cahn,1979; Wang和Li,2010)。特别地,该能量的“均质”部分与原子在滑移面上的位移的“刚性”(即纯平移)部分有关,而“梯度”部分则说明了在该能量附近的那些区域中的能量存储。原子位移偏离刚性的滑移平面,例如在位错核中。通过伴随的全局能量缩放,界面能量模型有助于对整个相场能量进行原子确定,以作为(精确)原子能量的最佳近似。没有剩余的可调参数。为了简单起见,在此采用原子间电势和分子静力学。可替代地,可以使用从头开始(即,基于DFT的)方法。为了说明当前方法,将其应用于确定fcc铝和铜的相场自由能。然后将识别出的模型应用于这些材料中位错解离,堆积断层形成,滑移和位错反应的建模。同样,考虑了位错环的拉伸载荷。在此过程中,将当前的热力学图与基于Peach-Koehler力的经典机械图进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号