...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Crack growth and fracture toughness of amorphous Li-Si anodes: Mechanisms and role of charging/discharging studied by atomistic simulations
【24h】

Crack growth and fracture toughness of amorphous Li-Si anodes: Mechanisms and role of charging/discharging studied by atomistic simulations

机译:非晶态Li-Si阳极的裂纹扩展和断裂韧性:原子模拟研究的充放电机理和作用

获取原文
获取原文并翻译 | 示例
           

摘要

Fracture is the main cause of degradation and capacity fading in lithiated silicon during cycling. Experiments on the fracture of lithiated silicon show conflicting results, and so mechanistic models can help interpret experiments and guide component design. Here, large-scale K-controlled atomistic simulations of crack propagation (R-curve K_I vs. Δa) are performed at Li_xSi compositions x=0.5,1.0,1.5 for as-quenched/relaxed samples and at x=0.5,1.0 for samples created by discharging from higher Li compositions. In all cases, the fracture mechanism is void nucleation, growth, and coalescence. In as-quenched materials, with increasing Li content the plastic flow stress and elastic moduli decrease but void nucleation and growth happen at smaller stress, so that the initial fracture toughness K_(Ic)≈1.0MPam decreases slightly but the initial fracture energy J_(Ic) ≈ 10.5J/m~2 is similar. After 10 nm of crack growth, the fracture toughnesses increase and become similar at K_(Ic)≈1.9MPam across all compositions. Plane-strain equi-biaxial expansion simulations of uncracked samples provide complementary information on void nucleation and growth. The simulations are interpreted within the framework of Gurson model for ductile fracture, which predicts J_(Ic)=ασ_yD where α ≃ 1 and D is the void spacing, and good agreement is found. In spite of flowing plastically, the fracture toughness of Li_xSi is low because voids nucleate within nano-sized distances ahead of the crack (D ≈ 1nm). Scaling simulation results to experimental conditions, reasonable agreement with experimentally-estimated fracture toughnesses is obtained. The discharging process facilitates void nucleation but decreases the flow stress (as shown previously), leading to enhanced fracture toughness at all levels of crack growth. Therefore, the fracture behavior of lithiated silicon at a given composition is not a material property but instead depends on the history of charging/discharging. These findings indicate that the mechanical behavior (flow and fracture) of lithiated Si must be interpreted within a fully rate- and history-dependent framework.
机译:断裂是锂化硅在循环过程中降解和容量衰减的主要原因。关于锂化硅断裂的实验显示出相互矛盾的结果,因此机械模型可以帮助解释实验并指导组件设计。在这里,对于经淬火/松弛的样品,在Li_xSi成分x = 0.5,1.0,1.5下,对于样品x = 0.5,1.0,进行裂纹扩展的大规模K控制原子模拟(R曲线K_I与Δa)通过从较高的Li组成中释放出来而产生的。在所有情况下,断裂机理都是空隙成核,生长和聚结。在淬火后的材料中,随着Li含量的增加,塑性流动应力和弹性模量减小,但在较小的应力下会发生空核和长大,因此初始断裂韧性K_(Ic)≈1.0MPam略有减小,但初始断裂能J_( Ic)≈10.5J / m〜2相似。在10 nm的裂纹扩展后,所有组分的断裂韧性均增加,并且在K_(Ic)≈1.9MPam时变得相似。未裂化样品的平面应变等双轴扩展模拟提供了有关空洞形核和生长的补充信息。在Gurson延性断裂模型的框架内对模拟进行了解释,该模型预测J_(Ic)=ασ_yD,其中α≃1和D为空隙间距,并且发现了很好的一致性。尽管有塑性流动,但Li_xSi的断裂韧性仍然很低,这是因为空隙在裂纹之前(D≈1nm)的纳米级距离内成核。将模拟结果缩放到实验条件,可以获得与实验估计的断裂韧性的合理一致性。放电过程有利于空洞形核,但降低了流动应力(如前所示),从而在所有裂纹扩展水平上均提高了断裂韧性。因此,在给定的组成下,锂硅的断裂行为不是材料特性,而是取决于充电/放电的历史。这些发现表明,必须在完全取决于速率和历史的框架内解释锂化Si的机械行为(流动和断裂)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号