...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Effective response of classical, auxetic and chiral magnetoelastic materials by use of a new variational principle
【24h】

Effective response of classical, auxetic and chiral magnetoelastic materials by use of a new variational principle

机译:通过使用新的变分原理,经典,发性和手性磁弹性材料的有效响应

获取原文
获取原文并翻译 | 示例
           

摘要

This work provides a rigorous analysis of the effective response, i.e., average magnetization and magnetostriction, of magnetoelastic composites that are subjected to overall magnetic and mechanical loads. It clarifies the differences between a coupled magnetomechanical analysis in which one applies a Eulerian (current) magnetic field and an electroactive one where the Lagrangian (reference) electric field is usually applied. For this, we propose an augmented vector potential variational formulation to carry out numerical periodic homogenization studies of magnetoelastic solids at finite strains and magnetic fields. We show that the developed variational principle can be used for bottom-up design of microstructures with desired magnetomechanical coupling by properly canceling out the macro-geometry and specimen shape effects. To achieve that, we properly treat the average Maxwell stresses arising from the medium surrounding the magnetoelastic representative volume element (RVE), while at the same time we impose a uniform average Eulerian and not Lagrangian magnetic field. The developed variational principle is then used to study a large number of ideal as well as more realistic two-dimensional microstructures. We study the effect of particle volume fraction, particle distribution and particle shape and orientation upon the effective magnetoelastic response at finite strains. We consider also unstructured isotropic microstructures based on random adsorption algorithms and we carry out a convergence study of the representativity of the proposed unit cells. Finally, three-phase two-dimensional auxetic microstructures are analyzed. The first consists of a periodic distribution of voids and particle chains in a polymer matrix, while the second takes advantage of particle shape and chirality to produce negative and positive swelling by proper change of the chirality and the applied magnetic field.
机译:这项工作对承受整体磁性和机械负荷的磁弹性复合材料的有效响应(即平均磁化和磁致伸缩)进行了严格的分析。它阐明了在耦合磁机械分析中一个施加欧拉(当前)磁场与一个电活性分析之间的区别,在电分析中通常施加拉格朗日(参考)电场。为此,我们提出了一种增强的矢量势变分公式,以在有限应变和磁场下进行磁弹性固体的数值周期性均质化研究。我们表明,通过适当地消除宏观几何和样品形状的影响,所开发的变分原理可以用于具有所需磁机械耦合的微结构的自底向上设计。为此,我们适当地处理了由磁弹性代表体积元素(RVE)周围的介质产生的平均麦克斯韦应力,同时我们施加了均匀的平均欧拉磁场而不是拉格朗日磁场。发达的变分原理然后被用于研究大量理想的以及更现实的二维微观结构。我们研究了颗粒体积分数,颗粒分布,颗粒形状和取向对有限应变下有效磁弹性响应的影响。我们还考虑了基于随机吸附算法的非结构化各向同性微观结构,并对所提出的晶胞的代表性进行了收敛研究。最后,对三相二维组织进行了分析。第一种由聚合物基质中空隙和颗粒链的周期性分布组成,而第二种则利用颗粒形状和手性通过适当改变手性和施加的磁场来产生正负膨胀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号