首页> 外文期刊>Journal of the Mechanics and Physics of Solids >A multiscale crack-bridging model of cellulose nanopaper
【24h】

A multiscale crack-bridging model of cellulose nanopaper

机译:纤维素纳米纸的多尺度裂纹桥接模型

获取原文
获取原文并翻译 | 示例
           

摘要

The conflict between strength and toughness is a long-standing challenge in advanced materials design. Recently, a fundamental bottom-up material design strategy has been demonstrated using cellulose nanopaper to achieve significant simultaneous increase in both strength and toughness. Fertile opportunities of such a design strategy aside, mechanistic understanding is much needed to thoroughly explore its full potential. To this end, here we establish a multiscale crack-bridging model to reveal the toughening mechanisms in cellulose nanopaper. A cohesive law is developed to characterize the interfacial properties between cellulose nanofibrils by considering their hydrogen bonding nature. In the crack-bridging zone, the hydrogen bonds between neighboring cellulose nanofibrils may break and reform at the molecular scale, rendering a superior toughness at the macroscopic scale. It is found that cellulose nanofibrils exhibit a distinct size-dependence in enhancing the fracture toughness of cellulose nanopaper. An optimal range of the length-to-radius ratio of nanofibrils is required to achieve higher fracture toughness of cellulose nanopaper. A unified law is proposed to correlate the fracture toughness of cellulose nanopaper with its microstructure and material parameters. The results obtained from this model agree well with relevant experiments. This work not only helps decipher the fundamental mechanisms underlying the remarkable mechanical properties of cellulose nanopaper but also provides a guide to design a wide range of advanced functional materials.
机译:强度和韧性之间的冲突是高级材料设计中的长期挑战。近来,已经证明了使用纤维素纳米纸的基本的自下而上的材料设计策略,以实现强度和韧性的同时显着增加。除了这种设计策略的丰富机会外,还需要充分的机械理解来充分挖掘其全部潜力。为此,在这里我们建立了一个多尺度的裂纹桥接模型,以揭示纤维素纳米纸中的增韧机理。通过考虑纤维素纳米原纤维的氢键性质,开发了一种内聚规律来表征纤维素纳米原纤维之间的界面性质。在裂纹桥接区域,相邻纤维素纳米原纤维之间的氢键可能会在分子尺度断裂并重新形成,从而在宏观尺度上呈现出优异的韧性。发现纤维素纳米原纤维在增强纤维素纳米纸的断裂韧性方面表现出明显的尺寸依赖性。为了获得更高的纤维素纳米纸的断裂韧性,需要纳米纤维的长度与半径之比的最佳范围。提出了统一的规律将纤维素纳米纸的断裂韧性与其微观结构和材料参数相关联。从该模型获得的结果与相关实验吻合良好。这项工作不仅有助于破译纤维素纳米纸卓越机械性能的基本机理,而且还为设计各种先进功能材料提供了指导。

著录项

  • 来源
  • 作者单位

    Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;

    Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;

    Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA;

    Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cellulose nanopaper; Fracture toughness; Crack-bridging model; Cohesive law; Hydrogen bond;

    机译:纤维素纳米纸;断裂韧性;裂纹桥接模型;内聚法;氢键;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号