首页> 外文期刊>Cellulose >Mechanics of cellulose nanopaper using a scalable coarse-grained modeling scheme
【24h】

Mechanics of cellulose nanopaper using a scalable coarse-grained modeling scheme

机译:可伸缩粗粒建模方案纤维素纳米铝机的力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Cellulose, the abundantly available and sustainable biopolymer, exhibits intrinsic mechanical properties superior to many high-performance structural materials. The exceptional mechanical properties of cellulose-based materials inherently hinge upon their bottom-up hierarchical material structure starting from cellulose molecular chains to large scale fibers. However, fully atomistic simulation of such materials at experimental sample dimension becomes computationally prohibitive for the exploration of mechanics involving length scale effects. To address this challenge, here we develop a bottom-up, scalable coarse-grained (CG) modeling scheme of cellulose materials to study the deformation and failure mechanism of cellulose-based materials with insight of the interplay among cellulose building blocks at different length scales, starting from molecular chain, to nanofiber, and finally to microfiber scales. After studying the response of cellulose fibers under different loadings such as shearing and opening, this CG scheme is applied to study the deformation process of a cellulose nanopaper under tension, thus revealing the nanoscale failure mechanism otherwise impossible by atomistic simulations. In addition, the CG model also predicts the strength and stiffness of the nanopaper with respect to varying fiber lengths. Given its scalable nature, such a CG modeling scheme can be readily adapted to study the mechanical behaviors of other cellulose-based materials with mechanistic insight from molecular scale, and thus holds promise to foster the design of cellulose-based high-performance materials.
机译:纤维素是一种资源丰富、可持续发展的生物高聚物,其固有的力学性能优于许多高性能结构材料。纤维素基材料优异的机械性能本质上取决于从纤维素分子链到大规模纤维的自下而上的材料结构。然而,对于涉及长度尺度效应的力学探索而言,在实验样品尺寸下对此类材料进行的完全原子模拟在计算上是禁止的。为了应对这一挑战,我们开发了一个自下而上、可扩展的纤维素材料粗颗粒(CG)建模方案,以研究纤维素基材料的变形和破坏机制,并深入了解不同长度尺度的纤维素构建块之间的相互作用,从分子链到纳米纤维,最后到微纤维尺度。在研究了纤维素纤维在不同载荷(如剪切和打开)下的响应后,该CG方案被应用于研究纤维素纳米纸在拉伸下的变形过程,从而揭示了原子模拟不可能实现的纳米级破坏机制。此外,CG模型还预测了纳米纸在不同纤维长度下的强度和刚度。鉴于其可扩展性,这种CG建模方案可以很容易地适用于研究其他纤维素基材料的力学行为,具有分子尺度的机械洞察力,因此有望促进纤维素基高性能材料的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号