...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures
【24h】

Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures

机译:将机械和机电带隙合并到局部共振的超材料和超结构中

获取原文
获取原文并翻译 | 示例
           

摘要

Locally resonant metamaterials are characterized by bandgaps at wavelengths much larger than the lattice size. Such locally resonant bandgaps can be formed using mechanical or electromechanical resonators. However, the nature of bandgap formation in mechanical and electromechanical (particularly piezoelectric) metamaterials is fundamentally different since the former is associated with a dynamic modal mass, while the latter is due to a dynamic modal stiffness. Next-generation metamaterials and resulting metastructures (i.e. finite configurations with specified boundary conditions) hosting mechanical resonators as well as piezoelectric interfaces connected to resonating circuits can enable the formation of two bandgaps, right above and below the design frequency of the mechanical and electrical resonators, respectively, yielding a wider bandgap and enhanced design flexibility as compared to using a purely mechanical, or a purely electromechanical configuration. In this work, we establish a fully coupled framework for hybrid mechanical-electromechanical metamaterials and finite metastructures. Combined bandgap size is approximated in closed form as a function of the added mass ratio of the resonators and the system-level electromechanical coupling for the infinite resonators approximation. Case studies are presented for a hybrid metamaterial cantilever under bending vibration to understand the interaction of these two locally resonant metamaterial domains in bandgap formation. Specifically, it is shown that the mechanical and electromechanical bandgaps do not fully merge for a finite number of resonators in an undamped setting. However, the presence of even light damping in the resonators suppresses the intermediate resonances emerging within the combined bandgap, enabling seamless merging of the two bandgaps in real-world structures that have damping. The overall concept of combining mechanical and electromechanical bandgaps in the same single metastructure can be leveraged in more complex topologies of piezoelectric metamaterial-based solids and structures. (C) 2018 Elsevier Ltd. All rights reserved.
机译:局部共振超材料的特征在于带隙的波长远大于晶格尺寸。可以使用机械或机电谐振器来形成这种局部谐振带隙。但是,机械和机电(特别是压电)超材料中带隙形成的本质根本不同,因为前者与动态模态质量相关,而后者则与动态模态刚度有关。承载机械谐振器以及连接到谐振电路的压电接口的下一代超材料和由此产生的元结构(即具有指定边界条件的有限配置)可以在机械和电气谐振器的设计频率之上和之下实现两个带隙的形成,与使用纯机械配置或纯机电配置相比,它们分别具有更宽的带隙和增强的设计灵活性。在这项工作中,我们为混合机电超材料和有限元结构建立了完全耦合的框架。组合的带隙尺寸以闭合形式近似表示,这是谐振器的附加质量比和无限大谐振器近似的系统级机电耦合的函数。案例研究针对混合超材料悬臂在弯曲振动下的情况进行了研究,以了解带隙形成中这两个局部共振的超材料域的相互作用。具体地,示出了在无阻尼设置中对于有限数量的谐振器,机械和机电带隙没有完全合并。但是,谐振器中均匀的光阻尼会抑制组合带隙内出现的中间谐振,从而使两个带隙在具有阻尼的实际结构中无缝合并。可以在基于压电超材料的固体和结构的更复杂拓扑中利用将机械带隙和机电带隙组合到同一单个元结构中的总体概念。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号