...
首页> 外文期刊>Journal of the American Chemical Society >Formulation of Metal-Organic Framework-Based Drug Carriers by Controlled Coordination of Methoxy PEG Phosphate: Boosting Colloidal Stability and Redispersibility
【24h】

Formulation of Metal-Organic Framework-Based Drug Carriers by Controlled Coordination of Methoxy PEG Phosphate: Boosting Colloidal Stability and Redispersibility

机译:通过对甲氧基PEG磷酸盐的控制配制制备金属有机骨架的药物载体:促进胶体稳定性和重新分散性

获取原文
获取原文并翻译 | 示例
           

摘要

Metal-organic framework nanoparticles (nanoMOFs) have been widely studied in biomedical applications. Although substantial efforts have been devoted to the development of biocompatible approaches, the requirement of tedious synthetic steps, toxic reagents, and limitations on the shelf life of nanoparticles in solution are still significant barriers to their translation to clinical use. In this work, we propose a new postsynthetic modification of nanoMOFs with phosphate-functionalized methoxy polyethylene glycol (mPEG-PO_3) groups which, when combined with lyophilization, leads to the formation of redispersible solid materials. This approach can serve as a facile and general formulation method for the storage of bare or drug-loaded nanoMOFs. The obtained PEGylated nanoMOFs show stable hydrodynamic diameters, improved colloidal stability, and delayed drug-release kinetics compared to their parent nanoMOFs. Ex situ characterization and computational studies reveal that PEGylation of PCN-222 proceeds in a two-step fashion. Most importantly, the lyophilized, PEGylated nanoMOFs can be completely redispersed in water, avoiding common aggregation issues that have limited the use of MOFs in the biomedical field to the wet form-a critical limitation for their translation to clinical use as these materials can now be stored as dried samples. The in vitro performance of the addition of mPEG-PO_3 was confirmed by the improved intracellular stability and delayed drug-release capability, including lower cytotoxicity compared with that of the bare nanoMOFs. Furthermore, z-stack confocal microscopy images reveal the colocalization of bare and PEGylated nanoMOFs. This research highlights a facile PEGylation method with mPEG-PO_3, providing new insights into the design of promising nanocarriers for drug delivery.
机译:金属有机框架纳米颗粒(Nanomofs)已广泛研究生物医学应用。虽然已经致力于生物相容性方法的大量努力,但繁琐的合成步骤,有毒试剂的要求,溶液中纳米颗粒的保质期的要求仍然是其与临床用途的重要障碍。在这项工作中,我们提出了具有磷酸官能化的甲氧基聚乙二醇(MPEG-PO_3)的新的纳米族氟脲的新蛋白质修饰,当与冻干相结合时,导致重新分离的固体材料的形成。该方法可以作为储存裸露或药物纳米族的容易和一般配方方法。与母纳米福伊非相比,所得的聚乙二醇化的纳米蛋白酶显示出稳定的流体动力直径,改善的胶体稳定性和延迟的药物释放动力学。 EX原位表征和计算研究表明,PCN-222的PEG化以两步的方式进行。最重要的是,冻干的聚乙二醇化的纳米植物可以完全重新分离在水中,避免了常见的聚集问题,这些问题限制了在生物医学领域中使用MOF,湿式形式 - 他们现在可以作为临床用途的关键限制作为干燥样品储存。通过改善的细胞内稳定性和延迟的药物释放能力,包括与裸纳米胺的细胞毒性降低细胞毒性,确认了添加MPEG-PO_3的体外性能。此外,Z堆叠共聚焦显微镜图像揭示了裸露和聚乙二醇纳米族的分致化。该研究突出了具有MPEG-PO_3的容易聚乙二醇化方法,为有前途的纳米载体的设计提供了新的洞察力。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第34期|13557-13572|共16页
  • 作者单位

    The Adsorption & Advanced Materials Laboratory (A~2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Cambridge CB3 0AS United Kingdom;

    The Adsorption & Advanced Materials Laboratory (A~2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Cambridge CB3 0AS United Kingdom;

    The Adsorption & Advanced Materials Laboratory (A~2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Cambridge CB3 0AS United Kingdom;

    Biominerals Research Laboratory & Cellular Imaging and Analysis Facility Department of Veterinary Medicine University of Cambridge Cambridge CB3 0ES United Kingdom;

    Electron Microscopy Group Department of Materials Science and Metallurgy University of Cambridge Cambridge CB3 0FS United Kingdom;

    Department of Chemistry University of Cambridge Cambridge CB2 1EW United Kingdom;

    The Adsorption & Advanced Materials Laboratory (A~2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Cambridge CB3 0AS United Kingdom;

    Department of Chemistry University of Cambridge Cambridge CB2 1EW United Kingdom;

    Biominerals Research Laboratory & Cellular Imaging and Analysis Facility Department of Veterinary Medicine University of Cambridge Cambridge CB3 0ES United Kingdom;

    Biominerals Research Laboratory & Cellular Imaging and Analysis Facility Department of Veterinary Medicine University of Cambridge Cambridge CB3 0ES United Kingdom;

    Biominerals Research Laboratory & Cellular Imaging and Analysis Facility Department of Veterinary Medicine University of Cambridge Cambridge CB3 0ES United Kingdom;

    School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201418 P. R. China;

    Department of Chemistry University of Cambridge Cambridge CB2 1EW United Kingdom;

    Department of Chemistry University of Cambridge Cambridge CB2 1EW United Kingdom;

    The Adsorption & Advanced Materials Laboratory (A~2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Cambridge CB3 0AS United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号