...
首页> 外文期刊>Journal of the American Chemical Society >Nonradiative Triplet Loss Suppressed in Organic Photovoltaic Blends with Fluoridated Nonfullerene Acceptors
【24h】

Nonradiative Triplet Loss Suppressed in Organic Photovoltaic Blends with Fluoridated Nonfullerene Acceptors

机译:在有机光伏共混物中抑制了非接种性三态损失,氟化物的非氟丁烯受体

获取原文
获取原文并翻译 | 示例
           

摘要

In organic photovoltaic (OPV) blends, photogenerated excitons dissociate into charge-separated electrons and holes at donor/ acceptor interfaces. The bimolecular recombination of spin-uncorre- lated electrons and holes may cause nonradiative loss by forming the low-lying triplet excited states (T_1) via the intermediate charge-transfer triplet states. Here, we show that such a spin-related loss channel can be suppressed in the OPV blends with fluorinated nonfullerene acceptors (NFAs). By combining ultrafast optical spectroscopy and triplet sensitization measurements, the T_1 states at the acceptors have been observed to generate from the charge-separated electrons and holes in the OPV blends with a same polymer donor and two sets of NFAs with and without fluorination. The triplet formation is largely suppressed and the lifetime of charge carrier is markedly prolonged in the blends with fluorinated NFAs. The fluorination effect on the charge dynamics can be ascribed to the modified energy alignment between the triplet excited states of charge-transfer and locally excited characters as supported by quantum chemical computation. Our findings explain the mechanism responsible for the improved photocurrent generation in the OPV blends with fluorinated NFAs, suggesting that manipulating the energy landscape of triplet excited states is a promising strategy for further optimizing OPV devices.
机译:在有机光伏(OPV)共混物中,光生激子在供体/受体界面处解离电荷分离的电子和孔。通过中间电荷转移三重态态形成低洼三重型激发态(T_1),旋转非晶体和孔的双分子重组可能导致非抗体损失。这里,我们表明,在OPV混合物中可以抑制这种自旋相关的损耗通道,用氟化非氟丁烯受体(NFAS)。通过组合超快光学光谱和三联敏感测量,已经观察到受体的T_1状态从电荷分离的电子和OPV中的孔中产生相同的聚合物供体和两组NFA,其具有且不氟化。三重态地层大大抑制,电荷载体的寿命明显延长在与氟化NFAs的共混物中。对电荷动力学的氟化效应可以归因于量子化学计算支持的三重型激发和局部激发字符之间的改进的能量对准。我们的研究结果解释了对氟化NFAS的OPV混合物中改善的光电流产生的机制,表明操纵三联兴奋状态的能量景观是进一步优化OPV器件的有希望的策略。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第11期|4359-4366|共8页
  • 作者单位

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center for Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center for Advanced Microstructures Nanjing University Nanjing 210093 China;

    Institute of Theoretical and Computational Chemistry Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center for Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center for Advanced Microstructures Nanjing University Nanjing 210093 China;

    Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China State key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China;

    Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China;

    Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China;

    Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China State key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center for Advanced Microstructures Nanjing University Nanjing 210093 China;

    Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China;

    Institute of Theoretical and Computational Chemistry Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center for Advanced Microstructures Nanjing University Nanjing 210093 China Department of Physics University of Arkansas Fayetteville Arkansas 72701 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号