首页> 外文期刊>Journal of the American Chemical Society >Promiscuous Enzymes Cooperate at the Substrate Level En Route to Lactazole A
【24h】

Promiscuous Enzymes Cooperate at the Substrate Level En Route to Lactazole A

机译:混杂酶在底乳唑氏道级底物水平

获取原文
获取原文并翻译 | 示例
       

摘要

Enzymes involved in the biosynthesis of ribosomaUy synthesized and post-translationally modified peptides (RiPPs) often have relaxed specificity profiles and are able to modify diverse substrates. When several such enzymes act together during precursor peptide maturation, a multitude of products can form, yet usually the biosynthesis converges on a single natural product. For the most part, the mechanisms controlling the integrity of RiPP assembly remain elusive. Here, we investigate the biosynthesis of lactazole A, a model thiopeptide produced by five promiscuous enzymes from a ribosomal precursor peptide. Using our in vitro thiopeptide production (FIT-Laz) system, we determine the order of biosynthetic events at the individual modification level and supplement this study with substrate scope analysis for participating enzymes. Our results reveal an unusual but well-defined assembly process where cyclodehydration, dehydroalanine formation, and azoline dehydrogenation events are intertwined due to minimal substrate recognition requirements characteristic of every lactazole enzyme. Additionally, each enzyme plays a role in directing LazBF-mediated dehydroalanine formation, which emerges as the central theme of the assembly process. Cyclodehydratase LazDE discriminates a single serine residue for azoline formation, leaving the remaining five as potential dehydratase substrates. Pyridine synthase LazC exerts kinetic control over LazBF to prevent the formation of overdehydrated thiopeptides, whereas the coupling of dehydrogenation to dehydroalanine installation impedes generation of underdehydrated products. Altogether, our results indicate that substrate-level cooperation between the biosynthetic enzymes maintains the integrity of lactazole assembly. This work advances our understanding of RiPP biosynthesis processes and facilitates thiopeptide bioengineering.
机译:参与核糖瘤的生物合成和翻译后修饰的肽(RIPP)的酶通常具有松弛的特异性曲线,并且能够改变各种衬底。当若干这样的酶在前体肽成熟期间一起动作时,可以形成多种产品,但是生物合成在单一天然产物上会聚。在大多数情况下,控制RIPP组装完整性的机制仍然难以捉摸。在这里,我们研究了乳唑A的生物合成,由来自核糖体前体肽的五种混杂酶产生的模型硫代肽。使用我们的体外硫肽生产(FIT-LAZ)系统,我们确定各种改性水平的生物合成事件的顺序,并补充了参与酶的基材范围分析的研究。我们的结果揭示了一种不寻常但明确定义的组装过程,其中环氮化水合物,脱氢胺形成和氮杂胺脱氢事件由于每种乳唑酶的最小基质识别要求特征而被交织在一起。另外,每种酶在引导Lazbf介导的脱氢氨基氨基氨基中发挥作用,其作为组装过程的中心主题出现。环氢化物酶Lazde判断氮杂物形成的单一丝氨酸残基,将其余五作为潜在的脱水酶底物。吡啶合成酶Lazc对拉斯巴夫发挥动力控制,以防止形成牛肽的硫代肽,而脱氢对脱氢碱性安装的偶联阻碍了欠吲哚类产物的产生。完全,我们的结果表明,生物合成酶之间的基材级合作保持了乳唑组件的完整性。这项工作进展了我们对RIPP生物合成过程的理解,并促进硫肽生物工程。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第32期|13886-13897|共12页
  • 作者单位

    Department of Chemistry Graduate School of Science The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan;

    Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan;

    Department of Chemistry Faculty of Science Gakushuin University Toshima-ku Tokyo 171-8588 Japan;

    Department of Chemistry Graduate School of Science The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan;

    Department of Biotechnology Graduate School of Agricultural and Life Sciences and Collaborative Research Institute for Innovative Microbiology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan;

    Department of Chemistry Graduate School of Science The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:16:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号