首页> 外文期刊>Journal of the American Chemical Society >Bottom-up Assembly of Nanoporous Graphene with Emergent Electronic States
【24h】

Bottom-up Assembly of Nanoporous Graphene with Emergent Electronic States

机译:与紧急电子国家的纳米多孔石墨烯的自下而上组装

获取原文
获取原文并翻译 | 示例
       

摘要

The incorporation of nanoscale pores into a sheet of graphene allows it to switch from an impermeable semimetal to a semiconducting nanosieve. Nanoporous graphenes are desirable for applications ranging from high-performance semiconductor device channels to atomically thin molecular sieve membranes, and their performance is highly dependent on the periodicity and reprodu-cibility of pores at the atomic level. Achieving precise nanopore topologies in graphene using top-down lithographic approaches has proven to be challenging due to poor structural control at the atomic level. Alternatively, atomically precise nanometer-sized pores can be fabricated via lateral fusion of bottom-up synthesized graphene nanoribbons. This technique, however, typically requires an additional high temperature cross-coupling step following the nanoribbon formation that inherently yields poor lateral conjugation, resulting in 2D materials that are weakly connected both mechanically and electronically. Here, we demonstrate a novel bottom-up approach for forming fully conjugated nanoporous graphene through a single, mild annealing step following the initial polymer formation. We find emergent interface-localized electronic states within the bulk band gap of the graphene nanoribbon that hybridize to yield a dispersive two-dimensional low-energy band of states. We show that this low-energy band can be rationalized in terms of edge states of the constituent single-strand nanoribbons. The localization of these 2D states around pores makes this material particularly attractive for applications requiring electronically sensitive molecular sieves.
机译:将纳米尺度孔掺入一片石墨烯中,允许其从不透水半甲酸切换到半导体纳米。纳米多孔石墨烯对于从高性能半导体器件通道到原子薄分子筛膜的应用,它们的性能高度依赖于原子水平处的孔的周期性和再现能力。使用自上而下的光刻方法在石墨烯中实现精确的纳米孔拓扑,已被证明由于原子水平的结构控制差而挑战。或者,可以通过自下而上合成的石墨烯纳米纤维突出的横向熔化来制造原子上精确的纳米尺寸的孔。然而,这种技术通常需要额外的高温交叉偶联步骤,其在纳米纳米形成后固有地产生较差的横向缀合,导致2D材料,该材料在机械和电子上弱。在这里,我们证明了一种新的自下而上的方法,用于通过在初始聚合物形成之后通过单个温和的退火步骤形成完全缀合的纳米多孔石墨烯。我们在石墨烯纳米孔的散装带隙中找到了紧急接口局部的电子状态,其杂交以产生各种分散的二维低能量带。我们表明,该低能量带可以根据构成单链纳米队的边缘状态合理化。这些2D状态周围孔的定位使得这种材料对于需要电子敏感分子筛的应用特别有吸引力。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第31期|13507-13514|共8页
  • 作者单位

    Department of Physics University of California Berkeley California 94720 United States;

    Department of Chemistry University of California Berkeley California 94720 United States;

    Department of Physics University of California Berkeley California 94720 United States;

    Department of Physics University of California Berkeley California 94720 United States;

    Department of Chemistry University of California Berkeley California 94720 United States;

    Department of Physics University of California Berkeley California 94720 United States;

    Department of Physics University of California Berkeley California 94720 United States Center for Nanometer-Scale Science and Advanced Materials NANOSAM Faculty of Physics Astronomy and Applied Computer Science Jagiellonian University PL 30-348 Krakow Poland;

    Department of Physics University of California Berkeley California 94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Department of Chemistry University of California Berkeley California 94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Department of Physics University of California Berkeley California 94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:16:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号