首页> 外文期刊>Journal of the American Chemical Society >Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore
【24h】

Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore

机译:质子化绿色荧光蛋白发色团的颜色和拍摄机制

获取原文
获取原文并翻译 | 示例
       

摘要

The neutral or A state of the green fluorescent protein (GFP) chromophore is a remarkable example of a photoacid naturally embedded in the protein environment and accounts for the large Stokes shift of GFP in response to near UV excitation. Its color tuning mechanism has been largely overlooked, as it is less preferred for imaging applications than the redder anionic or B state. Past studies, based on site-directed mutagenesis or solvatochromism of the isolated chromophore, have concluded that its color tuning range is much narrower than its anionic counterpart. However, as we performed extensive investigation on more GFP mutants, we found that the color of the neutral chromophore can be more sensitive to protein electrostatics than can the anionic counterpart. Electronic Stark spectroscopy reveals a fundamentally different electrostatic color tuning mechanism for the neutral state of the chromophore that demands a three-form model as compared to that of the anionic state, which requires only two forms (J. Am. Chem. Soc. 2019, 141, 15250-15265). Specifically, an underlying zwitterionic charge-transfer state is required to explain its sensitivity to electrostatics. As the Stokes shift is tightly linked to excited-state proton transfer (ESPT) of the protonated chromophore, we infer design principles of the GFP chromophore as a photoacid through the color tuning mechanisms of both protonation states. The three-form model could also be applied to similar biological and nonbiological dyes and complements the failure of the two-form model for donor-acceptor systems with localized ground-state electronic distributions.
机译:绿色荧光蛋白(GFP)发色团的中性或状态是天然嵌入在蛋白质环境中的光酸的卓越实例,并占GFP的大型斯托克斯响应于接近紫外线激发而占GFP的大剧情。其颜色调谐机构在很大程度上被忽略,因为对成像应用的比例优选比Redder阴离子或B状态更不好。过去的研究基于分离发色团的现场导向诱变或溶剂溶解度,得出结论,其颜色调谐范围比其阴离子对应物窄得多。然而,正如我们对更多GFP突变体进行的广泛调查,我们发现中性发色团的颜色对蛋白质静电学更敏感而不是阴离子对应物。电子STARK光谱透露了与阴离子状态相比需要三种模型的发色团的中性状态的基本上不同的静电颜色调谐机制,该模型仅需要两种形式(J.AM。Chem.Soc。2019年,2019年, 141,15250-15265)。具体地,需要潜在的两性离子电荷转移状态来解释其对静电学的敏感性。随着斯托克斯换档与质子化发色团的激发态质子转移(ESPT)紧密相关,我们通过两个质子化状态的颜色调谐机制推断出GFP发色团的设计原理。三种模型也可以应用于相似的生物和非生物染料,并补充了具有局部地面电子分布的供体 - 受体系统的两种模型的故障。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第25期|11032-11041|共10页
  • 作者

    Chi-Yun Lin; Steven G. Boxer;

  • 作者单位

    Department of Chemistry Stanford University Stanford California 94305 United States;

    Department of Chemistry Stanford University Stanford California 94305 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:16:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号