首页> 外文期刊>Journal of the American Chemical Society >Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries
【24h】

Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries

机译:通过不同官能聚合物的稳定高压Li-Metal电池的不同官能聚合物,工程Janus嵌段

获取原文
获取原文并翻译 | 示例
       

摘要

The fast-ionic-conducting ceramic electrolyte is promising for next-generation high-energy-density Li-metal batteries, yet its application suffers from the high interfacial resistance and poor interfacial stability. In this study, the compatible solid-state electrolyte was designed by coating Li1.4Al0.4Ti1.6(PO4)(3) (LATP) with polyacrylonitrile (PAN) and polyethylene oxide (PEO) oppositely to satisfy deliberately the disparate interface demands. Wherein, the upper PAN constructs soft-contact with LiNi0.6Mn0.2Co0.2O2, and the lower PEO protects LATP from being reduced, guaranteeing high-voltage tolerance and improved stability toward Li-metal anode performed in one ceramic. Moreover, the core function of LATP is amplified to guide homogeneous ions distribution and hence suppresses the formation of a space-charge layer across interfaces, uncovered by the COMSOL Multiphysics concentration field simulation. Thus, such a bifunctional modified ceramic electrolyte integrates the respective superiority to render Li-metal batteries with excellent cycling stability (89% after 120 cycles), high Coulombic efficiency (exceeding 99.5% per cycle), and a dendrite-free Li anode at 60 degrees C, which represents an overall design of ceramic interface engineering for future practical solid battery systems.
机译:快速离子导电陶瓷电解质对下一代高能密度Li金电池有前途,但其应用遭受高界面抗性和界面稳定性差。在该研究中,通过涂布Li1.4Al0.4Ti1.6(PO4)(3)(Latp)与聚丙烯腈(PAN)和相反的聚环氧乙烷(PEO)来设计相容的固态电解质,以刻意满足不同的接口需求。其中,上盘构造与LINI0.6MN0.2CO0.2O220.2O2的软接触,下方PEO保护LATP减少,保证在一个陶瓷中执行的Li-Metal阳极的高压容差和改善稳定性。此外,扩增LATP的核心功能以引导均匀离子分布,因此抑制跨界面的空间电荷层的形成,由COMSOL多体学浓度场模拟揭示。因此,这种双官能改性陶瓷电解质整合了各自的优越性,以使Li-Metal电池具有优异的循环稳定性(在120次循环后89%),高库仑效率(每循环超过99.5%),以及60℃的树突式锂阳极Degrapte C,这代表了未来实用实用电池系统的陶瓷接口工程的整体设计。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第23期|9165-9169|共5页
  • 作者单位

    Chinese Acad Sci Key Lab Mol Nanostruct & Nanotechnol Res Educ Ctr Excellence Mol Sci BNLMS Inst Chem Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Hunan Agr Univ Coll Sci Changsha 410128 Hunan Peoples R China;

    Chinese Acad Sci Key Lab Mol Nanostruct & Nanotechnol Res Educ Ctr Excellence Mol Sci BNLMS Inst Chem Beijing 100190 Peoples R China;

    Chinese Acad Sci Key Lab Mol Nanostruct & Nanotechnol Res Educ Ctr Excellence Mol Sci BNLMS Inst Chem Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Key Lab Mol Nanostruct & Nanotechnol Res Educ Ctr Excellence Mol Sci BNLMS Inst Chem Beijing 100190 Peoples R China;

    Chinese Acad Sci Key Lab Mol Nanostruct & Nanotechnol Res Educ Ctr Excellence Mol Sci BNLMS Inst Chem Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Key Lab Mol Nanostruct & Nanotechnol Res Educ Ctr Excellence Mol Sci BNLMS Inst Chem Beijing 100190 Peoples R China;

    Hunan Agr Univ Coll Sci Changsha 410128 Hunan Peoples R China;

    Chinese Acad Sci Key Lab Mol Nanostruct & Nanotechnol Res Educ Ctr Excellence Mol Sci BNLMS Inst Chem Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Key Lab Mol Nanostruct & Nanotechnol Res Educ Ctr Excellence Mol Sci BNLMS Inst Chem Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:16:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号