首页> 外文期刊>Journal of the American Chemical Society >Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts
【24h】

Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts

机译:负载型单原子催化剂异构加氢甲酰化的前景

获取原文
获取原文并翻译 | 示例
           

摘要

The potential of oxide-supported rhodium single atom catalysts (SACs) for heterogeneous hydroformylation was investigated both theoretically and experimentally. Using high-level domain-based local-pair natural orbital coupled cluster singles doubles with perturbative triples contribution (DLPNO—CCSD-(T)) calculations, both stability and catalytic activity were investigated for Rh single atoms on different oxide surfaces. Atomically dispersed, supported Rh catalysts were synthesized on MgO and CeO_2. While the CeO_2-supported rhodium catalyst is found to be highly active, this is not the case for MgO, most likely due to increased confinement, as determined by extended X-ray absorption fine structure spectroscopy (EXAFS), that diminishes the reactivity of Rh complexes on MgO. This agrees well with our computational investigation, where we find that rhodium carbonyl hydride complexes on flat oxide surfaces such as CeO_2(111) have catalytic activities comparable to those of molecular complexes. For a step edge on a MgO(30l) surface, however, calculations show a significantly reduced catalytic activity. At the same time, calculations predict that stronger adsorption at the higher coordinated adsorption site leads to a more stable catalyst. Keeping the balance between stability and activity appears to be the main challenge for oxide supported Rh hydroformylation catalysts. In addition to the chemical bonding between rhodium complex and support, the confinement experienced by the active site plays an important role for the catalytic activity.
机译:从理论上和实验上研究了氧化物负载的铑单原子催化剂(SAC)进行非均相加氢甲酰化的潜力。使用基于高域域的局部对自然轨道耦合簇单双加扰动三重贡献(DLPNO-CCSD-(T))计算,研究了在不同氧化物表面上Rh单原子的稳定性和催化活性。在MgO和CeO_2上合成了原子分散的负载型Rh催化剂。尽管发现CeO_2负载的铑催化剂具有高活性,但MgO并非如此,这很可能是由于扩展X射线吸收精细结构光谱法(EXAFS)所确定的限制作用增加了,从而降低了Rh的反应活性。 MgO上的配合物。这与我们的计算研究非常吻合,在计算研究中,我们发现在平坦氧化物表面上的羰基铑铑氢化物络合物(例如CeO_2(111))具有与分子络合物相当的催化活性。但是,对于MgO(30l)表面的台阶边缘,计算结果表明催化活性大大降低。同时,计算预测在较高的配位吸附位点上的较强吸附会导致催化剂更稳定。保持稳定性和活性之间的平衡似乎是氧化物负载的Rh加氢甲酰化催化剂的主要挑战。除了铑配合物和载体之间的化学键外,活性位点所经历的限制对于催化活性也起着重要作用。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第11期|5087-5096|共10页
  • 作者单位

    Institute of Catalysis Research and Technology Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany;

    Max-Planck-Institut fur Kohlenforschung 45470 M'ulheim an der Ruhr Germany;

    ALBA Synchrotron Light Source 08290 Cerdanyola del ValTes Barcelona Spain;

    Max-Planck-Institut fur Kohlenforschung 45470 Mulheim an der Ruhr Germany ITQ Instituto de Tecnologia Quimica Universitat Politecnica de Vatencia-Consejo Superior de Investigaciones Cientificas (UPV-CSIC) 46022 Valencia Spain;

    Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号