首页> 外文期刊>Journal of the American Chemical Society >Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries
【24h】

Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries

机译:水性可充电锌电池中具有氧化还原活性的菲醌三角形

获取原文
获取原文并翻译 | 示例
           

摘要

Aqueous rechargeable zinc batteries (ZBs) have received considerable attention recently for large-scale energy storage systems in terms of rate performance, cost, and safety. Nevertheless, these ZBs still remain a subject for investigation, as researchers search for cathode materials enabling high performance. Among the various candidate cathode materials for ZBs, quinone compounds stand out as candidates because of their high specific capacity, sustainability, and low cost. Quinone-based cathodes, however, suffer from the critical limitation of undergoing dissolution during battery cycling, leading to a deterioration in battery life. To address this problem, we have introduced a redox-active triangular phenanthrenequinone-based macrocycle (PQ-Δ) with a rigid geometry and layered superstructure. Notably, we have confirmed that Zn~(2+) ions, together with H_2O molecules, can be inserted into the PQ-Δ organic cathode, and, as a consequence, the interfacial resistance between the cathode and electrolytes is decreased effectively. Density functional theory calculations have revealed that the low interfacial resistance can be attributed mainly to decreasing the desolvation energy penalty as a result of the insertion of hydrated Zn~(2+) ions in the PQ-Δ cathode. The combined effects of the insertion of hydrated Zn~(2+) ions and the robust triangular structure of PQ-Δ serve to achieve a large reversible capacity of 210 mAh g~(-1) at a high current density of 150 mA g~(-1), along with an excellent cycle-life, that is, 99.9% retention after 500 cycles. These findings suggest that the utilization of electron-active organic macrocycles, combined with the low interfacial resistance associated with the solvation of divalent carrier ions, is essential for the overall performance of divalent battery systems.
机译:就速率性能,成本和安全性而言,水性可充电锌电池(ZB)最近在大型储能系统中受到了广泛关注。然而,随着研究人员寻找能够实现高性能的阴极材料,这些ZB仍然是研究的主题。在ZB的各种候选阴极材料中,醌化合物因其高比容量,可持续性和低成本而脱颖而出。然而,基于醌的阴极受到在电池循环期间进行溶解的严格限制,导致电池寿命的劣化。为了解决这个问题,我们引入了具有刚性几何结构和分层上层结构的基于氧化还原活性的三角形菲醌的大环(PQ-Δ)。值得注意的是,我们已经确认可以将Zn〜(2+)离子与H_2O分子一起插入PQ-Δ有机阴极中,从而有效地降低了阴极与电解质之间的界面电阻。密度泛函理论计算表明,低界面电阻主要归因于由于在PQ-Δ阴极中插入了水合Zn〜(2+)离子而降低了去溶剂化能量的损失。水合Zn〜(2+)离子的插入和PQ-Δ坚固的三角结构的共同作用有助于在150 mA g〜的高电流密度下实现210 mAh g〜(-1)的大可逆容量。 (-1)具有出色的循环寿命,即500次循环后保留99.9%。这些发现表明,利用电子活性有机大环化合物以及与二价载流子离子的溶剂化相关的低界面电阻,对于二价电池系统的整体性能至关重要。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第5期|2541-2548|共8页
  • 作者

  • 作者单位

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

    Division of Analytical Science Korea Basic Science Institute Yuseong-gu Daejeon 34133 Republic of Korea;

    School of Chemistry University of New South Wales Sydney 2052 Australia;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States School of Chemistry University of New South Wales Sydney 2052 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号