首页> 外文期刊>Journal of the American Chemical Society >Thermodynamic Analysis of Metal-Ligand Cooperativity of PNP Ru Complexes: Implications for CO_2 Hydrogenation to Methanol and Catalyst Inhibition
【24h】

Thermodynamic Analysis of Metal-Ligand Cooperativity of PNP Ru Complexes: Implications for CO_2 Hydrogenation to Methanol and Catalyst Inhibition

机译:PNP Ru配合物的金属-配体热力学分析:对CO_2加氢制甲醇和催化剂抑制作用的暗示

获取原文
获取原文并翻译 | 示例
       

摘要

The hydrogenation of CO2 in the presence of amines to formate, formamides, and methanol (MeOH) is a promising approach to streamlining carbon capture and recycling. To achieve this, understanding how catalyst design impacts selectivity and performance is critical. Herein we describe a thorough thermochemical analysis of the (de)-hydrogenation catalyst, (PNP)Ru-Cl (PNP = 2,6-bis(di-tert-butylphosphinomethyl)pyridine; Ru = Ru(CO)(H)) and correlate our findings to catalyst performance. Although this catalyst is known to hydrogenate CO2 to formate with a mild base, we show that MeOH is produced when using a strong base. Consistent with pKa measurements, the requirement for a strong base suggests that the deprotonation of a six-coordinate Ru species is integral to the catalytic cycle that produces MeOH. Our studies also indicate that the concentration of MeOH produced is independent of catalyst concentration, consistent with a deactivation pathway that is dependent on methanol concentration, not equivalency. Our temperature-dependent equilibrium studies of the dearomatized congener, (*PNP)Ru, with various H-X species (to give (PNP)Ru-X; X = H, OH, OMe, OCHO, OC(O)NMe2) reveal that formic acid equilibrium is approximately temperature-independent; relative to H-2, it is more favored at elevated temperatures. We also measure the hydricity of (PNP)Ru-H in THE and show how subsequent coordination of the substrate can impact the apparent hydricity. The implications of this work are broadly applicable to hydrogenation and dehydrogenation catalysis and, in particular, to those that can undergo metal-ligand cooperativity (MLC) at the catalyst. These results serve to benchmark future studies by allowing comparisons to be made among catalysts and will positively impact rational catalyst design.
机译:在胺存在下将CO2加氢成甲酸酯,甲酰胺和甲醇(MeOH)是简化碳捕获和再循环的一种有前途的方法。为此,了解催化剂设计如何影响选择性和性能至关重要。在这里,我们描述了(de)加氢催化剂(PNP)Ru-Cl(PNP = 2,6-双(二叔丁基膦基甲基)吡啶; Ru = Ru(CO)(H))的彻底热化学分析将我们的发现与催化剂性能相关联。尽管已知该催化剂会用弱碱将CO2加氢形成甲酸酯,但我们证明使用强碱会产生MeOH。与pKa测量一致,对强碱的要求表明六配位Ru物种的去质子化是产生MeOH的催化循环必不可少的。我们的研究还表明,产生的MeOH浓度与催化剂浓度无关,这与减活途径有关,该减活途径取决于甲醇浓度,而不是当量。我们对脱芳香族同源物(* PNP)Ru和各种HX物种(给出(PNP)Ru-X; X = H,OH,OMe,OCHO,OC(O)NMe2)的温度依赖性平衡研究表明酸平衡大致与温度无关;相对于H-2,在高温下更受青睐。我们还测量了THE中(PNP)Ru-H的水合度,并显示了底物的后续配位如何影响表观水合度。这项工作的意义广泛地适用于加氢和脱氢催化,特别是那些可在催化剂上进行金属-配体协同作用(MLC)的催化剂。通过允许在催化剂之间进行比较,这些结果有助于将来的研究基准,并将对合理的催化剂设计产生积极影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号