首页> 外文期刊>Journal of the American Chemical Society >Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru-PNP Pincer Complexes
【24h】

Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru-PNP Pincer Complexes

机译:Ru-PNP夹钳配合物催化碱性甲醇水溶液的脱氢机理

获取原文
获取原文并翻译 | 示例
           

摘要

Ruthenium PNP complex la (RuH(CO)Cl-(HN(C_2H_4Pi-Pr_2)_2)) represents a state-of-the-art catalyst for low-temperature (<100 ℃) aqueous methanol dehydrogenation to H_2 and CO_2. Herein, we describe an investigation that combines experiment, spectroscopy, and theory to provide a mechanistic rationale for this process. During catalysis, the presence of two anionic resting states was revealed, Ru-dihydride (3~-) and Ru-monohydride (4~-) that are deproto-nated at nitrogen in the pincer ligand backbone. DFT calculations showed that O- and CH- coordination modes of methoxide to ruthenium compete, and form complexes 4~- and 3~-, respectively. Not only does the reaction rate increase with increasing KOH, but the ratio of 3~-/4~- increases, demonstrating that the "inner-sphere" C-H cleavage, via C-H coordination of methoxide to Ru, is promoted by base. Protonation of 3~- liberates H_2 gas and formaldehyde, the latter of which is rapidly consumed by KOH to give the corresponding gem-diolate and provides the overall driving force for the reaction. Full MeOH reforming is achieved through the corresponding steps that start from the gem-diolate and formate. Theoretical studies into the mechanism of the catalyst Me-1a (N-methylated 1a) revealed that C-H coordination to Ru sets-up C-H cleavage and hydride delivery; a process that is also promoted by base, as observed experimentally. However, in this case, Ru-dihydride Me-3 is much more stable to protonation and can even be observed under neutral conditions. The greater stability of Me-3 rationalizes the lower rates of Me-1a compared to 1a, and also explains why the reaction rate then drops with increasing KOH concentration.
机译:钌PNP络合物1a(RuH(CO)Cl-(HN(C_2H_4Pi-Pr_2)_2))是用于低温(<100℃)甲醇水溶液脱氢制H_2和CO_2的最先进催化剂。在这里,我们描述了一种结合了实验,光谱学和理论的研究,为这一过程提供了机械原理。在催化过程中,发现存在两个阴离子静止状态,Ru-二氢化物(3-)和Ru-一氢化物(4--)在钳位配体主链中在氮上被去质子化。 DFT计算表明,甲醇与钌的O-和CH-配位竞争,形成配合物4〜-和3〜-。反应速率不仅随着KOH的增加而增加,而且3〜-/ 4〜-的比率也增加,表明通过甲醇的C-H配位与Ru进行的“内球” C-H裂解由碱促进。 3-的质子化释放出H_2气体和甲醛,后者迅速被KOH消耗,生成相应的Geme-diolate,并为反应提供了整体动力。完全的MeOH重整是通过相应的步骤实现的,这些步骤从宝石二甲酸酯和甲酸酯开始。对催化剂Me-1a(N-甲基化1a)机理的理论研究表明,C-H与Ru的配位可促进C-H的裂解和氢化物的传递。如实验观察到的那样,碱也促进了这一过程。然而,在这种情况下,Ru-二氢化物Me-3的质子化更加稳定,甚至可以在中性条件下观察到。 Me-1的更高稳定性使Me-1a的速率低于1a,这也解释了为什么反应速率随KOH浓度的增加而下降。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第45期|14890-14904|共15页
  • 作者单位

    Leibniz Institute for Catalysis, University of Rostock, Albert Einstein-Strasse 29a, 18059 Rostock, Germany ,Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, tr. La Crucca 3, 07100 Sassari, Italy;

    Leibniz Institute for Catalysis, University of Rostock, Albert Einstein-Strasse 29a, 18059 Rostock, Germany;

    Leibniz Institute for Catalysis, University of Rostock, Albert Einstein-Strasse 29a, 18059 Rostock, Germany;

    Leibniz Institute for Catalysis, University of Rostock, Albert Einstein-Strasse 29a, 18059 Rostock, Germany;

    Leibniz Institute for Catalysis, University of Rostock, Albert Einstein-Strasse 29a, 18059 Rostock, Germany;

    Leibniz Institute for Catalysis, University of Rostock, Albert Einstein-Strasse 29a, 18059 Rostock, Germany;

    Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark;

    Leibniz Institute for Catalysis, University of Rostock, Albert Einstein-Strasse 29a, 18059 Rostock, Germany;

    CreativeQuantum GmbH, Wegedornstrasse 32, 12524 Berlin, Germany;

    Leibniz Institute for Catalysis, University of Rostock, Albert Einstein-Strasse 29a, 18059 Rostock, Germany;

    Leibniz Institute for Catalysis, University of Rostock, Albert Einstein-Strasse 29a, 18059 Rostock, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号