首页> 外文期刊>Journal of the American Chemical Society >Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy
【24h】

Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy

机译:分子动力学模拟和单分子力谱揭示的蛋白质复合物中的纳米牛顿力学性能的机理

获取原文
获取原文并翻译 | 示例
       

摘要

Can molecular dynamics simulations predict the mechanical behavior of protein complexes? Can simulations decipher the role of protein domains of unknown function in large macromolecular complexes? Here, we employ a wide-sampling computational approach to demonstrate that molecular dynamics simulations, when carefully performed and combined with single-molecule atomic force spectroscopy experiments, can predict and explain the behavior of highly mechanostable protein complexes. As a test case, we studied a previously unreported homologue from Ruminococcus flavefaciens called X-module-Dockerin (XDoc) bound to its partner Cohesin (Coh). By performing dozens of short simulation replicas near the rupture event, and analyzing dynamic network fluctuations, we were able to generate large simulation statistics and directly compare them with experiments to uncover the mechanisms involved in mechanical stabilization. Our single-molecule force spectroscopy experiments show that the XDoc-Coh homologue complex withstands forces up to 1 nN at loading rates of 10(5) pN/s. Our simulation results reveal that this remarkable mechanical stability is achieved by a protein architecture that directs molecular deformation along paths that run perpendicular to the pulling axis. The X-module was found to play a crucial role in shielding the adjacent protein complex from mechanical rupture. These mechanisms of protein mechanical stabilization have potential applications in biotechnology for the development of systems exhibiting shear enhanced adhesion or tunable mechanics.
机译:分子动力学模拟可以预测蛋白质复合物的机械行为吗?模拟能否破译未知功能蛋白结构域在大型高分子复合物中的作用?在这里,我们采用广泛采样的计算方法来证明,分子动力学模拟经过仔细执行并与单分子原子力光谱实验结合,可以预测和解释可高度机械化的蛋白质复合物的行为。作为测试案例,我们研究了以前从未报道过的来自Ruminococcus flavefaciens的同系物,名为X-module-Dockerin(XDoc),绑定到其伙伴Cohesin(Coh)。通过在破裂事件附近执行数十个简短的仿真副本,并分析动态网络波动,我们能够生成大型仿真统计数据,并将它们直接与实验进行比较,以发现涉及机械稳定性的机制。我们的单分子力光谱实验表明,XDoc-Coh同系物复合物在10(5)pN / s的加载速率下可承受高达1 nN的力。我们的模拟结果表明,这种出色的机械稳定性是通过蛋白质结构实现的,该结构将分子变形沿着垂直于拉动轴的路径引导。发现X-模块在保护相邻的蛋白质复合物免受机械断裂中起关键作用。蛋白质机械稳定的这些机制在生物技术中具有潜在的应用潜力,可以开发出表现出剪切增强的粘附力或可调力学的系统。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第37期|14752-14763|共12页
  • 作者单位

    Univ Illinois Beckman Inst Adv Sci & Technol Urbana IL 61801 USA;

    Ludwig Maximilians Univ Munchen Lehrstuhl Angew Phys & Ctr Nanosci D-80799 Munich Germany;

    Univ Estadual Campinas Sch Chem Engn BR-13083852 Campinas SP Brazil;

    Weizmann Inst Sci Dept Biomol Sci IL-76100 Rehovot Israel;

    Univ Illinois Beckman Inst Adv Sci & Technol Urbana IL 61801 USA|Univ Illinois Dept Chem Urbana IL 61801 USA;

    Univ Basel Dept Chem CH-4058 Basel Switzerland|Swiss Fed Inst Technol Dept Biosyst Sci & Engn CH-4058 Basel Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:58:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号