首页> 外文期刊>Journal of the American Chemical Society >Roles of Iron Complexes in Catalytic Radical Alkene Cross-Coupling: A Computational and Mechanistic Study
【24h】

Roles of Iron Complexes in Catalytic Radical Alkene Cross-Coupling: A Computational and Mechanistic Study

机译:铁配合物在催化自由基烯烃交叉偶联中的作用:计算和机理研究

获取原文
获取原文并翻译 | 示例
           

摘要

A growing and useful class of alkene coupling reactions involve hydrogen atom transfer (HAT) from a metal-hydride species to an alkene to form a free radical, which is responsible for subsequent bond formation. Here, we use a combination of experimental and computational investigations to map out the mechanistic details of iron-catalyzed reductive alkene cross-coupling, an important representative of the HAT alkene reactions. We are able to explain several observations that were previously mysterious. First, the rate-limiting step in the catalytic cycle is the formation of the reactive Fe-H intermediate, elucidating the importance of the choice of reductant. Second, the success of the catalytic system is attributable to the exceptionally weak (17 kcal/mol) Fe-H bond, which performs irreversible HAT to alkenes in contrast to previous studies on isolable hydride complexes where this addition was reversible. Third, the organic radical intermediates can reversibly form organometallic species, which helps to protect the free radicals from side reactions. Fourth, the previously accepted quenching of the postcoupling radical through stepwise electron transfer/proton transfer is not as favorable as alternative mechanisms. We find that there are two feasible pathways. One uses concerted proton-coupled electron transfer (PCET) from an iron(II) ethanol complex, which is facilitated because the O-H bond dissociation free energy is lowered by 30 kcal/mol upon metal binding. In an alternative pathway, an O-bound enolate-iron(III) complex undergoes proton shuttling from an iron-bound alcohol. These kinetic,spectroscopic, and computational studies identify key organometallic species and PCET steps that control selectivity and reactivity in metal-catalyzed HAT alkene coupling, and create a firm basis for elucidation of mechanisms in the growing class of HAT alkene cross-coupling reactions.
机译:一类日益增长且有用的烯烃偶联反应涉及从金属氢化物到烯烃的氢原子转移(HAT),形成自由基,该自由基负责随后的键形成。在这里,我们结合实验研究和计算研究来绘制铁催化还原烯烃交叉偶联的机理细节,铁催化还原烯烃交叉偶联是HAT烯烃反应的重要代表。我们能够解释一些以前神秘的观察结果。首先,催化循环中的限速步骤是反应性Fe-H中间体的形成,阐明了选择还原剂的重要性。其次,催化系统的成功归因于异常弱的(17 kcal / mol)Fe-H键,与以往对可分离氢化物配合物可逆的研究相反,该键对烯烃表现出不可逆的HAT。第三,有机自由基中间体可以可逆地形成有机金属物质,这有助于保护自由基免受副反应的影响。第四,先前接受的通过逐步电子转移/质子转移进行的后偶联自由基的猝灭并不如其他机制那样有利。我们发现有两种可行的途径。一种方法是使用铁(II)乙醇配合物的质子耦合电子转移(PCET),这很方便,因为金属键合后,O-H键解离自由能降低了30 kcal / mol。在另一种途径中,O结合的烯醇盐-铁(III)络合物经历了与铁结合的醇的质子穿梭。这些动力学,光谱和计算研究确定了关键的有机金属种类和PCET步骤,这些步骤和步骤控制着金属催化的HAT烯烃偶联反应的选择性和反应性,并为阐明日益增长的HAT烯烃交叉偶联反应机理奠定了坚实的基础。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第18期|7473-7485|共13页
  • 作者单位

    Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06511 USA;

    Univ Toulouse, INPT, LCC CNRS, 205 Route Narbonne,BP 44099, F-31077 Toulouse 4, France;

    Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06511 USA;

    Univ Toulouse, INPT, LCC CNRS, 205 Route Narbonne,BP 44099, F-31077 Toulouse 4, France;

    Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06511 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号