首页> 外文期刊>Journal of the American Chemical Society >Charge Disproportionation Triggers Bipolar Doping in FeSb_(2-x)Sn_xSe_4 Ferromagnetic Semiconductors, Enabling a Temperature-Induced Lifshitz Transition
【24h】

Charge Disproportionation Triggers Bipolar Doping in FeSb_(2-x)Sn_xSe_4 Ferromagnetic Semiconductors, Enabling a Temperature-Induced Lifshitz Transition

机译:电荷歧化会触发FeSb_(2-x)Sn_xSe_4铁磁半导体中的双极掺杂,从而实现温度诱导的Lifshitz跃迁

获取原文
获取原文并翻译 | 示例
       

摘要

Ferromagnetic semiconductors (FMSs) featuring a high Curie transition temperature (T-c) and a strong correlation between itinerant carriers and localized magnetic moments are of tremendous importance for the development of practical spintronic devices. The realization of such materials hinges on the ability to generate and manipulate a high density of itinerant spin-polarized carriers and the understanding of their responses to external stimuli. In this study, we demonstrate the ability to tune magnetic ordering in the p-type FMS FeSb2-xSnxSe4 (0 = x = 0.20) through carrier density engineering. We found that the substitution of Sb by Sn FeSb2-xSnxSe4 increases the ordering of metal atoms within the selenium crystal lattice, leading to a large separation between magnetic centers. This results in a decrease in the T-c from 450 K for samples with x = 0.05 to 325 K for samples with 0.05 = x = 0.2. In addition, charge disproportionation arising from the substitution of Sb3+ by Sn2+ triggers the partial oxidation of Sb3+ to Sb5+, which is accompanied by the generation of both electrons and holes. This leads to a drastic decrease in the electrical resistivity and thermopower simultaneously with a large increase in the magnetic susceptibility and saturation magnetization upon increasing Sn content. The observed bipolar doping induces a very interesting temperature-induced quantum electronic transition (Lifshitz transition), which is manifested by the presence of an anomalous peak in the resistivity curve simultaneously with a reversal of the sign of a majority of the charge carriers from hole-like to electron-like at the temperature of maximum resistivity. This study suggests that while there is a strong correlation between the overall magnetic moment and free carrier spin in FeSb2-xSnxSe4 FMSs, the magnitude of the Curie temperature strongly depends on the spatial separation between localized magnetic centers rather than the concentration of magnetic atoms or the density of itinerant carriers.
机译:具有高居里转变温度(T-c)以及巡回载流子与局部磁矩之间具有很强相关性的铁磁半导体(FMS)对于实际自旋电子器件的开发至关重要。此类材料的实现取决于生成和操纵高密度的流动性自旋极化载体的能力,以及对它们对外部刺激的反应的理解。在这项研究中,我们展示了通过载流子密度工程技术来调节p型FMS FeSb2-xSnxSe4(0 <= x <= 0.20)中的磁性有序的能力。我们发现,用Sn FeSb2-xSnxSe4取代Sb会增加硒晶格中金属原子的有序排列,从而导致磁中心之间的较大间隔。这导致T-c从x <= 0.05的样品的450 K降低到0.05 <= x <= 0.2的样品的325K。另外,由Sn2 +取代Sb3 +引起的电荷歧化会触发Sb3 +部分氧化为Sb5 +,并伴随电子和空穴的产生。随着锡含量的增加,这导致电阻率和热功率的急剧降低,同时磁化率和饱和磁化强度大大增加。观察到的双极掺杂会引起一个非常有趣的温度诱导的量子电子跃迁(Lifshitz跃迁),其表现为电阻率曲线中存在一个异常峰,同时大多数电荷载流子的符号从空穴-中反转。在最大电阻率的温度下像电子一样。这项研究表明,尽管FeSb2-xSnxSe4 FMS中的总磁矩与自由载流子自旋之间有很强的相关性,但居里温度的大小很大程度上取决于局部磁中心之间的空间间隔,而不是磁原子或原子的浓度。流动载流子的密度。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第23期|9249-9261|共13页
  • 作者单位

    Univ Michigan, Dept Mat Sci & Engn, LE3M, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Mat Sci & Engn, LE3M, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Mat Sci & Engn, LE3M, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Mat Sci & Engn, LE3M, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Mat Sci & Engn, LE3M, Ann Arbor, MI 48109 USA|Governors State Univ, Div Sci Math & Technol, University Pk, IL 60484 USA;

    Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Mat Sci & Engn, LE3M, Ann Arbor, MI 48109 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:18:05

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号