首页> 外文期刊>Journal of the American Chemical Society >Measuring Ultra-Weak Protein Self-Association by Non-ideal Sedimentation Velocity
【24h】

Measuring Ultra-Weak Protein Self-Association by Non-ideal Sedimentation Velocity

机译:通过非理想的沉降速度测量超弱蛋白质的自缔合

获取原文
获取原文并翻译 | 示例
       

摘要

Ultra-weak self-association can govern the macroscopic solution behavior of concentrated macromolecular solutions ranging from food products to pharmaceutical formulations and the cytosol. For example, it can promote dynamic assembly of multi-protein signaling complexes, lead to intracellular liquid liquid phase transitions, and seed crystallization or pathological aggregates. Unfortunately, weak self-association is technically extremely difficult to study, as it requires very high protein concentrations where short intermolecular distances cause strongly correlated particle motion. Additionally, protein samples near their solubility limit in vitro frequently show some degree of polydispersity. Here we exploit the strong mass-dependent separation of assemblies in the centrifugal field to study ultra weak binding, using a sedimentation velocity technique that allows us to determine particle size distributions while accounting for colloidal hydrodynamic interactions and thermodynamic non-ideality (Chaturvedi, S. K.; et al. Nat. Commun. 2018, 9, 4415; DOI: 10.1038/s41467-018-06902-x). We show that this approach, applied to self-associating proteins, can reveal a time-average association state for rapidly reversible self-associations from which the free energy of binding can be derived. The method is label-free and allows studying mid-sized proteins at millimolar protein concentrations in a wide range of solution conditions. We examine the performance of this method with hen egg lysozyme as a model system, reproducing its well-known ionic-strength dependent weak self-association. The application to chicken gamma S-crystallin reveals weak monomer dimer self-association with K-D = 24 mM, corresponding to a standard free energy change of approximately -9 kJ/mol, which is a large contribution to the delicate balance of forces ensuring eye lens transparency.
机译:超弱的自缔合可以控制从食品到药物制剂和胞质溶胶的浓缩大分子溶液的宏观溶液行为。例如,它可以促进多蛋白信号复合物的动态组装,导致细胞内液相的转变,以及种子结晶或病理性聚集。不幸的是,弱自缔合在技术上极难研究,因为它需要非常高的蛋白质浓度,而短分子间距离会导致强烈的粒子运动相关。另外,在体外接近其溶解度极限的蛋白质样品经常表现出一定程度的多分散性。在这里,我们利用沉降速度技术,利用离心力场中组件的强质量相关性分离来研究超弱结合,该技术使我们能够确定粒径分布,同时考虑了胶体流体动力学相互作用和热力学非理想性(Chaturvedi,SK; 2008)。 et al.Nat.Commun.2018,9,4415; DOI:10.1038 / s41467-018-06902-x)。我们表明,这种方法,适用于自缔合蛋白,可以揭示快速可逆的自缔合的时间平均缔合状态,可以从中得出结合的自由能。该方法无标签,可在各种溶液条件下以毫摩尔蛋白质浓度研究中等大小的蛋白质。我们以鸡蛋溶菌酶为模型系统,研究了该方法的性能,再现了其众所周知的离子强度依赖性弱自缔合。应用于鸡γS-晶状体蛋白显示KD = 24 mM的弱单体二聚体自缔合,对应于约-9 kJ / mol的标准自由能变化,这对于确保确保晶状体的力的精细平衡有很大贡献透明度。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第7期|2990-2996|共7页
  • 作者单位

    Natl Inst Biomed Imaging & Bioengn, Dynam Macromol Assembly Sect, Lab Cellular Imaging & Macromol Biophys, NIH, Bethesda, MD 20892 USA;

    NEI, Sect Mol Struct & Funct Genom, NIH, Bethesda, MD 20892 USA;

    Natl Inst Biomed Imaging & Bioengn, Dynam Macromol Assembly Sect, Lab Cellular Imaging & Macromol Biophys, NIH, Bethesda, MD 20892 USA;

    NEI, Sect Mol Struct & Funct Genom, NIH, Bethesda, MD 20892 USA;

    Natl Inst Biomed Imaging & Bioengn, Dynam Macromol Assembly Sect, Lab Cellular Imaging & Macromol Biophys, NIH, Bethesda, MD 20892 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:12:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号