首页> 外文期刊>Journal of the American Chemical Society >A Method for Determining Structure Ensemble of Large Disordered Protein: Application to a Mechanosensing Protein
【24h】

A Method for Determining Structure Ensemble of Large Disordered Protein: Application to a Mechanosensing Protein

机译:一种确定大蛋白紊乱结构的方法:在机械传感蛋白中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Structure characterization of intrinsically disordered proteins (IDPs) remains a key obstacle in understanding their functional mechanisms. Due to the highly dynamic feature of IDPs, structure ensembles instead of static unique structures are often derived from experimental data. Several state-of-the-art computational methods have been developed to select an optimal ensemble from a pregenerated structure pool, but they suffer from low efficiency for large IDPs. Here we present a matching pursuit genetic algorithm (MPGA) for structure ensemble determination, which takes advantages from both matching pursuit (MP) to reduce the search space and genetic algorithm (GA) to reduce the restriction on constraint types. The MPGA method is validated using a reference ensemble with predefined structures. In comparison with the conventional GA, MPGA takes much less computational time for large IDPs. The utility of the method is demonstrated by application to structure ensemble determination of a mechanosensing protein domain with 306 amino acids. The structure ensemble determined reveals that the N-terminal region 1-240 is more compact than the C-terminal region 240-306. The unique structural feature explains why only a small portion of YXXP tyrosine residues can be phosphorylated easily by kinases in the absence of extension force and why the phosphorylation is force-dependent.
机译:本质上无序的蛋白质(IDP)的结构表征仍然是理解其功能机制的主要障碍。由于IDP的高度动态特性,通常从实验数据中得出结构集合而不是静态唯一结构。已经开发了几种最新的计算方法来从预生成的结构库中选择最佳集合,但是它们对于大型IDP的效率较低。在这里,我们提出了一种用于结构集成确定的匹配追踪遗传算法(MPGA),它既利用了匹配追踪(MP)来减少搜索空间,又利用了遗传算法(GA)来减少约束类型的约束。使用具有预定义结构的参考系对MPGA方法进行了验证。与常规GA相比,MPGA对于大型IDP的计算时间要少得多。该方法的实用性通过应用于具有306个氨基酸的机械传感蛋白结构域的结构集成测定而得到证明。所确定的结构整体揭示了N端区域1-240比C端区域240-306更紧凑。独特的结构特征解释了为什么在缺乏延伸力的情况下激酶仅能将YXXP酪氨酸残基的一小部分轻松地磷酸化,以及为什么磷酸化是力依赖性的。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第36期|11276-11285|共10页
  • 作者单位

    Natl Univ Singapore, Dept Biol Sci, 14 Sci Dr 4, Singapore 117543, Singapore;

    Natl Univ Singapore, Dept Biol Sci, 14 Sci Dr 4, Singapore 117543, Singapore;

    Nanyang Technol Univ, Sch Biol Sci, 60 Nanyang Dr, Singapore 637551, Singapore;

    Nanyang Technol Univ, Sch Biol Sci, 60 Nanyang Dr, Singapore 637551, Singapore;

    Natl Univ Singapore, Dept Biol Sci, 14 Sci Dr 4, Singapore 117543, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:09:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号