首页> 外文期刊>Journal of the American Chemical Society >Scaling Up Electronic Spin Qubits into a Three-Dimensional Metal-Organic Framework
【24h】

Scaling Up Electronic Spin Qubits into a Three-Dimensional Metal-Organic Framework

机译:将电子自旋量子位放大到三维金属有机框架

获取原文
获取原文并翻译 | 示例
       

摘要

Practical implementation of highly coherent molecular spin qubits for challenging technological applications, such as quantum information processing or quantum sensing, requires precise organization of electronic qubit molecular components into extended frameworks. Realization of spatial control over qubit-qubit distances can be achieved by coordination chemistry approaches through an appropriate choice of the molecular building blocks. However, translating single qubit molecular building units into extended arrays does not guarantee a priori retention of long quantum coherence and spin-lattice relaxation times due to the introduced modifications over qubit-qubit reciprocal distances and molecular crystal lattice phonon structure. In this work, we report the preparation of a three-dimensional (3D) metal-organic framework (MOF) based on vanadyl qubits, [VO(TCPP-Zn-2-bpy)] (TCPP = tetracarboxylphenylporphyrinate; bpy = 4,4'-bipyridyl) (1), and the investigation of how such structural modifications influence qubits' performances. This has been done through a multitechnique approach where structure and properties of a representative molecular building block of formula [VO(TPP)] (TPP = tetraphenylporphyrinate) (2) have been compared with those of the 3D MOF 1. Pulsed electron paramagnetic resonance measurements on magnetically diluted samples in titanyl isostructural analogues revealed that coherence times are retained almost unchanged for 1 with respect to 2 up to room temperature, while the temperature dependence of the spin-lattice relaxation time revealed insights into the role of low-energy vibrations, detected through terahertz spectroscopy, on the spin dynamics.
机译:在挑战性的技术应用(例如量子信息处理或量子感测)中,高度相干的分子自旋量子位的实际实现需要将电子量子位分子组件精确地组织到扩展框架中。可以通过配位化学方法通过适当选择分子构件来实现对量子位-量子位距离的空间控制。但是,由于对量子位-量子位的倒数距离和分子晶格声子结构进行了引入的修饰,将单个量子位的分子构建单元翻译成扩展的阵列并不能保证长期保留量子相干和自旋晶格弛豫时间。在这项工作中,我们报告了基于钒基位[VO(TCPP-Zn-2-bpy)](TCPP =四羧基苯基卟啉酸酯; bpy = 4,4)的三维(3D)金属有机框架(MOF)的制备'-bipyridyl)(1),并研究这种结构修饰如何影响量子位的性能。这是通过一种多技术方法完成的,该方法将具有代表性的分子式[VO(TPP)](TPP =四苯基卟啉酸酯)(2)的分子结构与性质与3D MOF 1的结构和性质进行了比较。于钛氧烷类似结构类似物的磁性稀释样品中,揭示了相干时间在室温下相对于2几乎保持不变,而自旋晶格弛豫时间的温度依赖性揭示了对低能振动作用的洞察力。通过太赫兹光​​谱,对自旋动力学。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第38期|12090-12101|共12页
  • 作者单位

    Tohoku Univ, Grad Sch Sci, Dept Chem, Aoba Ku, 3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan;

    Univ Firenze, Dipartimento Chim Ugo Schiff, Via Lastruccia 3, I-50019 Florence, Italy;

    Univ Firenze, Dipartimento Chim Ugo Schiff, Via Lastruccia 3, I-50019 Florence, Italy;

    Tohoku Univ, Grad Sch Sci, Dept Chem, Aoba Ku, 3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan;

    Univ Firenze, Dipartimento Chim Ugo Schiff, Via Lastruccia 3, I-50019 Florence, Italy;

    Univ Firenze, Dipartimento Chim Ugo Schiff, Via Lastruccia 3, I-50019 Florence, Italy;

    Univ Torino, Dipartimento Chim, Via P Giuria 7, I-10125 Turin, Italy;

    Univ Firenze, European Lab Nonlinear Spect, Via Nello Carrara 1, I-50019 Florence, Italy;

    Univ Firenze, European Lab Nonlinear Spect, Via Nello Carrara 1, I-50019 Florence, Italy;

    Univ Torino, Dipartimento Chim, Via P Giuria 7, I-10125 Turin, Italy;

    Univ Firenze, Dipartimento Chim Ugo Schiff, Via Lastruccia 3, I-50019 Florence, Italy;

    Univ Firenze, Dipartimento Chim Ugo Schiff, Via Lastruccia 3, I-50019 Florence, Italy;

    Tohoku Univ, Grad Sch Sci, Dept Chem, Aoba Ku, 3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:09:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号