首页> 外文期刊>Journal of the American Chemical Society >Evidence for a Partially Stalled γ Rotor in F_1 -ATPase from Hydrogen-Deuterium Exchange Experiments and Molecular Dynamics Simulations
【24h】

Evidence for a Partially Stalled γ Rotor in F_1 -ATPase from Hydrogen-Deuterium Exchange Experiments and Molecular Dynamics Simulations

机译:氢-氘交换实验和分子动力学模拟证明F_1 -ATPase中部分失速的γ转子

获取原文
获取原文并翻译 | 示例
       

摘要

F-1-ATPase uses ATP hydrolysis to drive rotation of the gamma subunit. The gamma C-terminal helix constitutes the rotor tip that is seated in an apical bearing formed by alpha(3)beta(3). It remains uncertain to what extent the gamma conformation during rotation differs from that seen in rigid crystal structures. Existing models assume that the entire gamma subunit participates in every rotation. Here we interrogated E. coli F-1-ATPase by hydrogen-deuterium exchange (HDX) mass spectrometry. Rotation of gamma caused greatly enhanced deuteration in the gamma C-terminal helix. The HDX kinetics implied that most F-1 complexes operate with an intact rotor at any given time, but that the rotor tip is prone to occasional unfolding. A molecular dynamics (MD) strategy was developed to model the off-axis forces acting on gamma. MD runs showed stalling of the rotor tip and unfolding of the gamma C-terminal helix. MD predicted H-bond opening events coincided with experimental HDX patterns. Our data suggest that in vitro operation of F(1)ATPase is associated with significant rotational resistance in the apical bearing. These conditions cause the gamma C-terminal helix to get "stuck" (and unfold) sporadically while the remainder of gamma continues to rotate. This scenario contrasts the traditional "greasy bearing" model that envisions smooth rotation of the gamma C-terminal helix. The fragility of the apical rotor tip in F-1-ATPase is attributed to the absence of a c(10) ring that stabilizes the rotation axis in intact F0F1. Overall, the MD/HDX strategy introduced here appears well suited for interrogating the inner workings of molecular motors.
机译:F-1-ATPase使用ATP水解来驱动γ亚基的旋转。伽马C末端螺旋线构成转子尖端,该尖端位于由alpha(3)beta(3)形成的顶端轴承中。旋转过程中的伽马构象与刚性晶体结构所见的构象在多大程度上尚不相同。现有模型假定整个伽马亚基参与每次旋转。在这里,我们通过氢-氘交换(HDX)质谱法对大肠杆菌F-1-ATPase进行了询问。伽玛旋转导致伽玛C末端螺旋的氘化大大增强。 HDX动力学表明,大多数F-1配合物在任何给定时间都与完整的转子一起运行,但转子尖端有时会松开。开发了分子动力学(MD)策略来模拟作用在伽玛上的离轴力。 MD运行显示转子尖端停转,γC末端螺旋展开。 MD预测H键打开事件与实验HDX模式重合。我们的数据表明,F(1)ATPase的体外操作与根尖的旋转阻力有关。这些条件导致伽玛C末端螺旋偶发地“卡住”(并展开),而其余伽玛继续旋转。这种情况与传统的“油腻轴承”模型形成对比,后者设想伽马C末端螺旋线的平滑旋转。 F-1-ATPase中根尖转子尖端的脆弱性归因于没有c(10)环,该环稳定了完整的F0F1中的旋转轴。总体而言,此处介绍的MD / HDX策略似乎非常适合询问分子电动机的内部工作原理。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第44期|14860-14869|共10页
  • 作者单位

    Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada;

    Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:09:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号