首页> 外文期刊>Journal of the American Chemical Society >Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc-Air Battery with Neutral Aqueous Electrolyte
【24h】

Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc-Air Battery with Neutral Aqueous Electrolyte

机译:异质结构促进的氧气电催化可实现具有中性水电解质的可充电锌空气电池

获取原文
获取原文并翻译 | 示例
       

摘要

Neutral aqueous zinc-air batteries (ZABs) are an emerging type of energy devices with substantially elongated lifetime and improved recyclability compared to conventional alkaline ZABs. However, their development is impeded by the lack of robust bifunctional catalyst at the air-electrode for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). Here, we report the controlled synthesis of NiFe2O4/FeNi2S4 heterostructured nanosheets (HNSs) that are highly efficient in catalyzing OER and ORR, therefore enabling neutral rechargeable ZABs. Associated with the formation of abundant oxide/sulfide interfaces over NiFe2O4/FeNi2S4 HNSs' surfaces, the catalyst's oxygen binding energy can be effectively tuned to enhance the OER and ORR activities, as revealed by the density functional theory calculations. In 0.2 M phosphate buffer solution, the optimized NiFe2O4/FeNi2S4 HNSs present an excellent oxygen electrocatalytic activity and stability, with much lower OER and ORR over- potentials than single-component FeNi2S4 or NiFe2O4 and with negligible performance decay in accelerated durability testing. When used as an air-electrode, the NiFe2O4/FeNi2S4 HNSs can deliver a power density of 44.4 mW cm(-2) and a superior cycling stability (only 0.6% decay after 900 cycles at 0.5 mA cm(-2)), making the resultant ZAB the most efficient and robust one with a neutral aqueous electrolyte reported to date. This work highlights the essential function of the heterostructure interface in oxygen electrocatalysis, opening a new avenue to advanced neutral metal-air batteries.
机译:与传统的碱性ZAB相比,中性含水锌-空气电池(ZAB)是一种新兴的能源设备,其使用寿命大大延长,可回收性更高。但是,由于在空气电极上缺乏用于氧释放反应(OER)和氧还原反应(ORR)的坚固的双功能催化剂,阻碍了它们的发展。在这里,我们报告了NiFe2O4 / FeNi2S4异质结构纳米片(HNSs)的受控合成,该纳米片在催化OER和ORR方面非常高效,因此可实现中性可充电ZAB。如密度泛函理论计算所揭示,与在NiFe2O4 / FeNi2S4 HNSs表面上形成大量氧化物/硫化物界面相关,可以有效地调节催化剂的氧结合能以增强OER和ORR活性。在0.2 M磷酸盐缓冲溶液中,经过优化的NiFe2O4 / FeNi2S4 HNS具有优异的氧电催化活性和稳定性,与单组分FeNi2S4或NiFe2O4相比,具有较低的OER和ORR过电势,并且在加速耐久性测试中性能可忽略不计。当用作空气电极时,NiFe2O4 / FeNi2S4 HNS可以提供​​44.4 mW cm(-2)的功率密度和出色的循环稳定性(在0.5 mA cm(-2)下900次循环后衰减仅为0.6%),所得的ZAB是迄今为止报道的最有效,最坚固的中性水性电解质。这项工作强调了异质结构界面在氧电催化中的基本功能,为高级中性金属-空气电池开辟了一条新途径。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第50期|17624-17631|共8页
  • 作者单位

    Lanzhou Univ, State Key Lab Appl Organ Chem, Key Lab Nonferrous Met Chem & Resources Utilizat, Lanzhou 730000, Peoples R China|Lanzhou Univ, Coll Chem & Chem Engn, Lanzhou 730000, Peoples R China;

    Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA;

    Peking Univ, Dept Mat & Sci Engn, Coll Engn, Beijing 100871, Peoples R China;

    Peking Univ, Dept Mat & Sci Engn, Coll Engn, Beijing 100871, Peoples R China;

    Lanzhou Univ, State Key Lab Appl Organ Chem, Key Lab Nonferrous Met Chem & Resources Utilizat, Lanzhou 730000, Peoples R China|Lanzhou Univ, Coll Chem & Chem Engn, Lanzhou 730000, Peoples R China;

    Lanzhou Univ, State Key Lab Appl Organ Chem, Key Lab Nonferrous Met Chem & Resources Utilizat, Lanzhou 730000, Peoples R China|Lanzhou Univ, Coll Chem & Chem Engn, Lanzhou 730000, Peoples R China;

    Lanzhou Univ, State Key Lab Appl Organ Chem, Key Lab Nonferrous Met Chem & Resources Utilizat, Lanzhou 730000, Peoples R China|Lanzhou Univ, Coll Chem & Chem Engn, Lanzhou 730000, Peoples R China;

    Virginia Commonwealth Univ, Coll Engn, Dept Chem & Life Sci Engn, Med Coll Virginia Campus, Richmond, VA 23284 USA;

    Lanzhou Univ, State Key Lab Appl Organ Chem, Key Lab Nonferrous Met Chem & Resources Utilizat, Lanzhou 730000, Peoples R China|Lanzhou Univ, Coll Chem & Chem Engn, Lanzhou 730000, Peoples R China;

    Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:09:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号