首页> 外文期刊>Journal of the American Chemical Society >AN ANALYSIS OF THE DEUTERIUM EQUILIBRIUM ISOTOPE EFFECT FOR THE BINDING OF ETHYLENE TO A TRANSITION-METAL COMPLEX
【24h】

AN ANALYSIS OF THE DEUTERIUM EQUILIBRIUM ISOTOPE EFFECT FOR THE BINDING OF ETHYLENE TO A TRANSITION-METAL COMPLEX

机译:乙烯与过渡金属配合物结合的氘平衡同位素效应分析

获取原文
获取原文并翻译 | 示例
       

摘要

The secondary deuterium equilibrium isotope effect (EIE) for the reversible binding of C2H4 to (mu-eta(1),eta(1)-C2H4)O-s2(CO)(8) (1) and C2D4 to (mu-eta(1)-eta(1),-C2D4)O-s2(CO)(8)(1-d(4)) has been measured in dodecane solvent. The measured EIE is ''inverse'' (C2D4 binds better than C2H4) and has a value of K-H/K-D = 0.7(L) at 313 K (40 degrees C) where K-H/K-D [C2D4](s)[1]/[C2H4]((s))[1-d(4)]. Previously published vibrational assignments for 1 and 1-d(4) and literature values for C2H4 and C2D4 allowed the calculation of the same EIE using 16 isotopically sensitive vibrational modes for both 1 and 1-d(4) and all 12 vibrational modes for both C2H4 and C2D4. The calculated EIE is also ''inverse'' and has a value of 0.7110 at 313 K (40 degrees C). The EIE calculated from vibrational frequencies may be resolved into a mass and moment of inertia factor (MMI = 2.272), a vibrational excitation factor (EXC = 0.8820), and a zero-point energy factor (ZPE = 0.3548), where EIE = MMI x EXC x ZPE. Using symmetry correlation rules, contributions to the EXC and ZPE factors from changes in ethylene vibrational modes for individual modes may be determined. The MMI component may be further resolved into translation and rotational contributions with the help of moments of inertia calculated from a previously determined single-crystal neutron diffraction structure of 1. The analysis reveals that, contrary to expectation, most of the EIE is not due to changes in vibrational frequencies common to free and complexed ethylene upon coordination but is instead primarily due to a zero-point energy factor from a vibrational mode (a b(2)-symmetry twist) for 1 and 1-d(4) which is not present in free ethylene. This interpretation of the observed ''inverse'' EIE appears to be general for alkene complexation and may underlie other recently observed ''inverse'' secondary deuterium equilibrium isotope effects for the coordination of small molecules (including alkanes and dihydrogen) to transition-metal complexes. [References: 59]
机译:C2H4与(mu-eta(1),eta(1)-C2H4)O-s2(CO)(8)(1)和C2D4与(mu-eta)的可逆结合的次级氘平衡同位素效应(EIE)在十二烷溶剂中测量了(1)-eta(1),-C2D4)O-s2(CO)(8)(1-d(4))。测得的EIE是“反”的(C2D4的结合优于C2H4),在313 K(40摄氏度)下的KH / KD = 0.7(L),其中KH / KD [C2D4] [s] [1] / [C2H4]((s))[1-d(4)]。以前发布的1和1-d(4)的振动分配以及C2H4和C2D4的文献值允许使用16个同位素敏感的1和1-d(4)振动模式以及所有12个振动模式进行相同EIE的计算C2H4和C2D4。计算得出的EIE也是“反”的,在313 K(40摄氏度)下的值为0.7110。根据振动频率计算出的EIE可以分解为质量和惯性矩因子(MMI = 2.272),振动激励因子(EXC = 0.8820)和零点能量因子(ZPE = 0.3548),其中EIE = MMI x EXC x ZPE。使用对称相关性规则,可以确定各个模式的乙烯振动模式变化对EXC和ZPE因子的贡献。借助先前确定的单晶中子衍射结构1计算出的惯性矩,可以进一步将MMI分量分解为平移和旋转贡献。分析表明,与预期相反,大多数EIE并非由于游离和络合的乙烯在配位时共同的振动频率变化,但主要是由于1和1-d(4)的振动模式(ab(2)-对称扭曲)的零点能量因子所致在游离乙烯中。对观察到的“逆” EIE的这种解释似乎是烯烃络合的通用方法,并且可能是最近观察到的其他“逆”次级氘平衡同位素效应的基础,用于小分子(包括烷烃和二氢)与过渡金属的配位复合体。 [参考:59]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号