首页> 外文期刊>Journal of the American Chemical Society >A QM/MM MOLECULAR DYNAMICS STUDY OF THE POTENTIAL OF MEAN FORCE FOR THE ASSOCIATION OF K+ WITH DIMETHYL ETHER IN AQUEOUS SOLUTION
【24h】

A QM/MM MOLECULAR DYNAMICS STUDY OF THE POTENTIAL OF MEAN FORCE FOR THE ASSOCIATION OF K+ WITH DIMETHYL ETHER IN AQUEOUS SOLUTION

机译:溶液中K +与二甲醚缔合的平均力的QM / MM分子动力学研究

获取原文
获取原文并翻译 | 示例
       

摘要

We present a hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) molecular dynamics study of the free energy profile for the association of K+ with dimethyl ether (DME) in H2O. The QM/MM method employs the semiempirical AM1 method to describe DME, the MM parametrization of Dang for K+, and the SPC/E model for H2O. The electrostatic and van der Waals parameters for the QM/MM coupling terms, which describe the interaction of K+/DME and H2O/DME, have been previously described.(1) We calculate a potential of mean force and fmd a weak solvent separated ion-dipole pair (SSIDP) at 5.4 Angstrom separation and a contact ion-dipole (CIDP) free energy minimum at 2.7 Angstrom separation of the K+ with the oxygen of DME. The latter distance agrees well with the gas-phase optimized K+/DME structure. There is a 3-kcal/mol barrier separating the CIDP and SSIDP which is centered at 3.8 Angstrom K+/DME separation. The estimated Delta A(bind) for the CIDP is 0.9 +/- 0.1 kcal/mol which predicts that K+/DME is not a strongly bound complex in aqueous solution. The SSIDP has only a 0.2-kcal/mol barrier separating it from completely uncomplexed K+/DME, and it also does not represent a stable bound structure. K+ and its first solvation shell waters exert an opposite effect an repolarizing the wave function of DME when the latter is inside the 3.8-Angstrom barrier. However, outside this barrier, both the solvent and the cation act to enhance the induced dipole moment of DME. This study demonstrates the nonadditive interactions of a solvated cation with a simple monodentate organic ligand. These results are useful for interpreting K+ complexation by multidentate ligands, such as the crown ethers. [References: 35]
机译:我们提出了一种混合的量子力学/分子力学(QM / MM)分子动力学研究,用于研究H2O中K +与二甲醚(DME)缔合的自由能分布。 QM / MM方法采用半经验AM1方法来描述DME,K +的Dang的MM参数化以及H2O的SPC / E模型。先前已经描述了QM / MM耦合项的静电和范德华参数,这些参数描述了K + / DME和H2O / DME的相互作用。(1)我们计算出平均力的势,并找到了弱溶剂分离离子-偶极对(SSIDP)在5.4埃处分离,接触离子-偶极子(CIDP)的自由能最小值在K +与DME的氧气分离在2.7埃处。后者的距离与气相优化的K + / DME结构非常吻合。有一个3 kcal / mol的势垒将CIDP和SSIDP分开,中心位于3.8埃K + / DME分离处。 CIDP的估计Delta A(结合)为0.9 +/- 0.1 kcal / mol,这表明K + / DME在水溶液中不是牢固结合的复合物。 SSIDP仅具有0.2kcal / mol的势垒,将其与完全不复杂的K + / DME隔开,并且它也不代表稳定的结合结构。当KME及其第一个溶剂化壳水在3.8埃屏障内时,它会产生相反的作用,使DME的波函数重新极化。但是,在该屏障之外,溶剂和阳离子都起着增强DME诱导偶极矩的作用。这项研究证明了溶剂化阳离子与简单的单齿有机配体的非加性相互作用。这些结果可用于解释多齿配体(例如冠醚)的K +络合。 [参考:35]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号