首页> 外文期刊>Journal of the American Chemical Society >MACROCYCLIC MODIFICATION USING ORGANOMETALLIC METHODOLOGIES, REGIOCHEMICALLY CONTROLLED MONO- AND BIS-HOMOLOGATION REACTIONS OF PORPHYRINOGEN WITH CARBON MONOXIDE ASSISTED BY EARLY TRANSITION METALS
【24h】

MACROCYCLIC MODIFICATION USING ORGANOMETALLIC METHODOLOGIES, REGIOCHEMICALLY CONTROLLED MONO- AND BIS-HOMOLOGATION REACTIONS OF PORPHYRINOGEN WITH CARBON MONOXIDE ASSISTED BY EARLY TRANSITION METALS

机译:早期过渡金属辅助的有机金属方法,卟啉原与一氧化碳的区域化学控制的单和双同位反应的大环修饰

获取原文
获取原文并翻译 | 示例
       

摘要

The homologation of a pyrrole to a pyridine ring within the porphyrinogen skeleton was achieved with high selectivity, good yield, and controlled regiochemistry and was scaled up to multiple gram quantities. The homologation of meso-octaethylporphyrinogen to meso-octaethyltris(pyrrole)-monopyridine was carried out by reacting carbon monoxide with Zr-C and Zr-H functionalities supported by the meso-octaethylporphyrinogen ligand [Et(8)N(4)H(4)]. The starting materials [(eta(5)-eta(1)-eta(5)-eta(1)-Et(8)N(4))Zr(mu-NaH)](2) (2) and [(eta(5)-eta(1)-eta(5)-eta(1)-Et(8)N(4))Zr(mu-KH)](2) (3) have been obtained by a direct addition of alkali hydrides to [(eta(5)-eta(1)-eta(5)-eta(1)-Et(8)N(4))Zr(THF)] (1) or via hydrozirconation reactions in the cases of [{(eta(5)-eta(1)-eta(1)-eta(1)-Et(8)N(4))ZrCH2CH3}(2)(mu-K)(2)] (6) and [{(eta(5)-eta(1)-eta(1)-eta(1)-Et(8)N(4))ZrCH=CH2}(2)(mu-K)(2)] (7). The reaction of 3 with carbon monoxide led to the intermediate formation of an eta(2)-formyl group possessing significant carbenium ion character, which was displayed in its addition to a pyrrole unit to give a pyridine ring in [{(eta(5)-eta-(1) eta-(5) eta-(1)Et(8)-(C4H2N)(3)C5H3N)Zr= O)(2)(mu-K)(2)] (4) The overall result is the formation of a novel macrocycle containing three pyrroles and one pyridine unit binding a zirconyl fragment derived from a complete cleavage of a C-O multiple bond. A straightforward hydrolysis of 4 with H2O gave a high yield of the free macrocycle [Et(8)(C4H2NH)(3)(C5H3N)] (5). The carbonylation of 6 and 7 allowed the determination of the regiochemistry of the homologation reaction which gave, upon hydrolysis of the corresponding zirconyl complex, the following free macrocycles [Et(8)(C4H2NH)(3)(3-RC(5)H(2)N)] [R = CH2CH3, 8; R = CH=CH2, 9]. The intermediate eta(2)-acyl homologates one of the pyrroles to a m-alkylpyridine ring. By this methodology we are able to introduce functionalizable substituents into the pyridine ring, i.e., in 9. General procedures are reported for one-pot large-scale synthesis of free trispyrrole-monopyridine macrocycles. The reaction of [(eta(5)-)eta(1)-eta(1)-eta(1)-Et(8)N(4))Nb-Me] (12) with carbon monoxide led to the oxoniobium(V) complex [{eta(5)-eta(1)-eta(1)-eta(1)-Et(8)(C4H2N)(3)(p-MeC(5)H(2)N)}Nb=O] (13) due to the carbenium ion properties of the intermediate eta(2)-acetyl derivative. Complex 13 contains the meso-octaethyltrispyrrole-monopyridine trianion derived from the homologation of one of the pyrrole rings of [Et(8)N(4)H(4)] into p-methylpyridine. The formation of a para-substituted pyridine is ascribed to the eta(3) bonding mode of one of the pyrrolyl anions. The homologation of the trispyrrole-monopyridine macrocycle [Et(8)(C4H2NH)(3)(C5H3N)] (7) to the bispyrrole-bispyridine macrocycle has been achieved using a sequence which involves the key hafnium derivative [{eta(5)-eta(1)-eta(5)-eta(1)-Et(8)(C4H2N)(3)(C5H3N)}Hf-Me] (17). The reaction of 17 with carbon monoxide provides the homologation of a further pyrrolyl anion into m-methylpyridine, giving the cis-bispyridine-bispyrrole macrocycle binding the oxohafnium(IV) unit in [cis-Et(8)(C4H2N)(3)(C5H3N)(m-MeC(5)H(2)N)Hf=O] (18). The hydrolysis of 18 freed the ligand [Et(8)(C4H2NH)(2)(C5H3N)(m-MeC(5)H(2)N)] (19) which was characterized by an X-ray analysis. Crystallographic details: compound 8 is triclinic, space group P
机译:吡咯与卟啉原骨架内的吡啶环的同源性以高选择性,良好收率和受控的区域化学实现,并按比例放大至数克。通过使一氧化碳与由介辛八乙基卟啉原配体[Et(8)N(4)H(4)支撑的Zr-C和Zr-H官能团反应,将介孔八乙基卟啉原形成为介辛八乙基三(吡咯)-单吡啶)]。起始原料[(eta(5)-eta(1)-eta(5)-eta(1)-Et(8)N(4))Zr(mu-NaH)](2)(2)和[[ eta(5)-eta(1)-eta(5)-eta(1)-Et(8)N(4))Zr(mu-KH)](2)(3)已通过直接添加碱金属氢化物生成[(eta(5)-eta(1)-eta(5)-eta(1)-Et(8)N(4))Zr(THF)](1)或在以下情况下通过加氢锆反应[{(eta(5)-eta(1)-eta(1)-eta(1)-Et(8)N(4))ZrCH2CH3}(2)(mu-K)(2)](6)和[{((eta(5)-eta(1)-eta(1)-eta(1)-Et(8)N(4))ZrCH = CH2}(2)(mu-K)(2)](7 )。 3与一氧化碳的反应导致中间形成具有显着碳正离子特性的eta(2)-甲酰基,在吡咯单元的加成中,[[((eta(5) -eta-(1)eta-(5)eta-(1)Et(8)-(C4H2N)(3)C5H3N)Zr = O)(2)(mu-K)(2)](4)总体结果是形成了一个新的大环,该大环包含三个吡咯和一个吡啶单元,该吡啶单元结合了源自CO多键完整裂解的锆基片段。用H2O进行4的直接水解可得到高产率的游离大环[Et(8)(C4H2NH)(3)(C5H3N)](5)。 6和7的羰基化可以确定同源反应的区域化学,该反应在水解相应的锆基配合物后,产生以下游离大环[Et(8)(C4H2NH)(3)(3-RC(5)H [(2)N)] [R = CH 2 CH 3,8;(N)。 R = CH = CH 2,9]。中间体η(2)-酰基将吡咯之一同化为间烷基吡啶环。通过这种方法,我们能够将可官能化的取代基引入吡啶环中,即在9中。报道了常规方法用于一锅大规模合成游离的三吡咯-单吡啶大环。 [(eta(5)-)eta(1)-eta(1)-eta(1)-Et(8)N(4))Nb-Me](12)与一氧化碳的反应生成氧铌( V)复杂[{eta(5)-eta(1)-eta(1)-eta(1)-Et(8)(C4H2N)(3)(p-MeC(5)H(2)N)} Nb = O](13)由于中间体eta(2)-乙酰基衍生物的碳正离子性质。配合物13包含由[Et(8)N(4)H(4)]的吡咯环之一同化为对甲基吡啶的内消旋八乙基三吡咯-单吡啶三阴离子。对位取代吡啶的形成归因于吡咯基阴离子之一的eta(3)键合模式。三吡咯-单吡啶大环[Et(8)(C4H2NH)(3)(C5H3N)](7)与双吡咯-双吡啶大环的同源性已通过涉及关键ha衍生物[{eta(5) -eta(1)-eta(5)-eta(1)-Et(8)(C4H2N)(3)(C5H3N)} Hf-Me](17)。 17与一氧化碳的反应提供了另一个吡咯基阴离子到间甲基吡啶的同系物,使顺式-双吡啶-双吡咯大环与[顺式Et(8)(C4H2N)(3)( C 5 H 3 N)(m-MeC(5)H(2)N)H f = O](18)。 18的水解释放出配体[Et(8)(C4H2NH)(2)(C5H3N)(m-MeC(5)H(2)N)](19),其通过X射线分析表征。晶体学详细信息:化合物8是三斜晶,空间群P

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号