首页> 外文期刊>Journal of the American Chemical Society >Amino Acid Backbone Specificity of the Escherichia coli Translation Machinery
【24h】

Amino Acid Backbone Specificity of the Escherichia coli Translation Machinery

机译:大肠杆菌翻译机的氨基酸骨干特异性

获取原文
获取原文并翻译 | 示例
           

摘要

The ribosome is unique among Nature's biosynthetic machines in that the catalytic center is distinct from the substrate recognition pocket. This separation of catalysis and substrate binding suggests the ribosome may be uniquely well suited to manipulation for the synthesis of novel polymers. Indeed, in 1971, Rich and Fahnestock demonstrated that the protein biosynthetic machinery could synthesize polymers containing a random mixture of ester and amide linkages using mis-acylated hydroxy-Phe-tRNA. With the development of an efficient method for the chemoenzymatic synthesis of aa-tRNAs, several groups then used misacylated suppressor tRNAs or A/P-site substrates to test the ability of the protein biosynthetic machinery to accept backbone analogues, including α-hydroxy acids, N-methyl amino acids, α, α-disubstituted amino acids, β-amino acids, and D-amino acids. While many of these analogues could be incorporated in response to a stop codon, the yields for incorporation generally were low. Recently, we demonstrated that a sense codon reassignment strategy with a pure translation system allowed translation of multiple, adjacent sense codons with synthetic acyl-tRNA substrates. This approach and related approaches breaking codon degeneracy open the possibility of using the protein biosynthetic machinery for template encoded synthesis of novel backbone polymers of defined length and composition with a pool of synthetic acyl-tRNAs. The question, however, is whether the substrate tolerance and, in particular, poor yields reported previously for backbone analogues reflect use of a suppressor tRNA, which must compete with endogenous release factors for translation of a stop codon, processing by endogenous aa-tRNA synthetases or other metabolic enzymes, such as D-aa-deacylase, or the intrinsic specificity of the protein biosynthetic machinery. Here, as a further step toward polymer synthesis with sense codon reassignment, we determined the relative yields of peptides biosynthesized using a series of backbone analogues at a sense codon in a pure E. coli translation system (Figure 1). For efficient incorporation of any analogue, the acyl-tRNAs must be able to bind to EF-Tu, be delivered to the ribosome, and function well in both peptide bond formation and translocation.
机译:在自然界的生物合成机器中,核糖体是独特的,因为催化中心与底物识别口袋不同。催化和底物结合的这种分离表明核糖体可能特别适合于操作以合成新的聚合物。实际上,在1971年,Rich和Fahnestock证明了蛋白质生物合成机制可以使用错误酰化的羟基-Phe-tRNA合成含有酯和酰胺键随机混合物的聚合物。随着化学酶促合成aa-tRNA的有效方法的发展,几组人随后使用了失酰化的抑制性tRNA或A / P位底物来测试蛋白质生物合成机制接受包括α-羟基酸在内的骨架类似物的能力, N-甲基氨基酸,α,α-二取代氨基酸,β-氨基酸和D-氨基酸。尽管可以响应终止密码子而掺入许多这些类似物,但掺入的产率通常较低。最近,我们证明了具有纯翻译系统的有义密码子重分配策略允许使用合成的酰基-tRNA底物翻译多个相邻的有义密码子。这种方法和打破密码子简并性的相关方法打开了使用蛋白质生物合成机制进行模板编码合成新的骨架聚合物的可能性,其中所述骨架结构具有限定的长度和组成以及合成的酰基-tRNA。然而,问题在于底物耐受性,尤其是先前报道的骨架类似物的不良收率是否反映了抑制性tRNA的使用,该抑制性tRNA必须与内源性释放因子竞争终止密码子的翻译,并通过内源性aa-tRNA合成酶进行加工或其他代谢酶(例如D-aa-脱酰基酶)或蛋白质生物合成机制的固有特异性。在这里,作为迈向具有有义密码子重新分配的聚合物合成的又一步,我们确定了在纯大肠杆菌翻译系统中使用一系列主链类似物以有义密码子生物合成的肽的相对产量(图1)。为了有效地掺入任何类似物,酰基-tRNA必须能够与EF-Tu结合,被递送至核糖体,并在肽键的形成和转运中都发挥良好的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号