首页> 外文期刊>Journal of the American Chemical Society >Simplification of Protein NOESY Spectra Using Bioorganic Precursor Synthesis and NMR Spectral Editing
【24h】

Simplification of Protein NOESY Spectra Using Bioorganic Precursor Synthesis and NMR Spectral Editing

机译:使用生物有机前体合成和NMR光谱编辑简化蛋白质NOESY光谱

获取原文
获取原文并翻译 | 示例
       

摘要

In the past decade, NMR spectroscopy has evolved into an efficient tool for structure determination of proteins in solution.1,2 Conventional NMR structure determination relies on a large number of nuclear Overhauser enhancement (NOE) restraints. Typically, a large number of restraints per residue (e.g., 15-20) is required to obtain three-dimensional protein structures of reasonable accuracies and precisions. Yet, in practice, the number of obtainable restraints is considerably smaller, predominantly due to severe spectral overlap and because of line broadening. A major advance in this regard has been the introduction of highly deuterated, 15N,13C-labeled protein samples which have attenuated transverse relaxation rates and lead to significant gains in sensitivity and spectral resolution. Another important improvement has been the development of the TROSY-detection scheme.5 Applications include the 110 kDa homooctameric protein, 7,8-dihydroneopterin aldolase,6 or NMR investigations of the 723-residue monomeric enzyme malate synthase G from E. coli (81.4 kDa).7,8 Recently, NMR methods development has focused on correlation spectroscopy for side chain methyl groups.9 First, methyl groups have favorable relaxation properties and thus give rise to intense correlation peaks.10 Second, given their location in hydrophobic cores of proteins and protein interaction interfaces, methyl NOEs are valuable sources for structural information. Third, there are robust techniques for the incorporation of protonated Ile, Leu, and Val methyl groups in highly deuterated ~(13)C,~(15)N-labeled proteins.12 Finally, they are excellent reporters of protein dynamics and provide unique insight into functionally relevant protein motions.
机译:在过去的十年中,NMR光谱学已发展成为一种确定溶液中蛋白质结构的有效工具。1,2传统的NMR结构确定依赖于大量的核Overhauser增强(NOE)约束。通常,每个残基需要大量限制(例如15-20),以获得具有合理准确度和精确度的三维蛋白质结构。然而,实际上,主要由于严重的光谱重叠和线路加宽,可获得的限制的数量要少得多。在这方面的一个重大进展是引入了高度氘化的15N,13C标记的蛋白质样品,该样品具有减弱的横向弛豫速率,并导致灵敏度和光谱分辨率的显着提高。 TROSY检测方案的发展是另一个重要的改进.5应用包括110 kDa的同八聚体蛋白,7,8-二氢蝶呤醛缩醛酸酶6或NMR研究来自大肠杆菌的723个残基单体酶苹果酸合酶G(81.4 kDa).7,8。最近,NMR方法的发展集中在侧链甲基的相关光谱研究上。9首先,甲基具有良好的弛豫特性,因此产生了很强的相关峰。10其次,考虑到它们在疏水核中的位置蛋白质和蛋白质相互作用界面,甲基NOE是有价值的结构信息来源。第三,有强大的技术可以在高度氘化的〜(13)C,〜(15)N标记的蛋白质中整合质子化的Ile,Leu和Val甲基。12最后,它们是蛋白质动力学的出色报道者,并提供独特的深入了解功能相关的蛋白质运动。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2004年第17期|p. 5348-5349|共2页
  • 作者单位

    Institute of Organical Chemistry, W?hringerstrasse 38, A-1090 Vienna, Austria;

    Institute of Theoretical Chemistry and Molecular Structural Biology, University of Vienna, Rennweg 95b, A-1030 Vienna, Austria;

    Institute of Organical Chemistry, W?hringerstrasse 38, A-1090 Vienna, Austria;

    Institute of Theoretical Chemistry and Molecular Structural Biology, University of Vienna, Rennweg 95b, A-1030 Vienna, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

  • 入库时间 2022-08-18 03:24:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号